4 research outputs found

    Cryptanalysis of a recent two factor authentication scheme

    Get PDF
    Very recently a scheme has been proposed by Wang and Ma for a robust smart-card based password authentication scheme, which claims to be secure against a Smart Card security breach. In this short note we attempt an initial cryptanalysis of this scheme

    A Forward-secure Efficient Two-factor Authentication Protocol

    Get PDF
    Two-factor authentication (2FA) schemes that rely on a combination of knowledge factors (e.g., PIN) and device possession have gained popularity. Some of these schemes remain secure even against strong adversaries that (a) observe the traffic between a client and server, and (b) have physical access to the client's device, or its PIN, or breach the server. However, these solutions have several shortcomings; namely, they (i) require a client to remember multiple secret values to prove its identity, (ii) involve several modular exponentiations, and (iii) are in the non-standard random oracle model. In this work, we present a 2FA protocol that resists such a strong adversary while addressing the above shortcomings. Our protocol requires a client to remember only a single secret value/PIN, does not involve any modular exponentiations, and is in a standard model. It is the first one that offers these features without using trusted chipsets. This protocol also imposes up to 40% lower communication overhead than the state-of-the-art solutions do

    A Forward-secure Efficient Two-factor Authentication Protocol

    Get PDF
    Two-factor authentication(2FA)schemes that rely on a combination of knowledge factors (e.g., PIN) and device possession have gained popularity. Some of these schemes remain secure even against strong adversaries that (a) observe the traffic between a client and server, and (b) have physical access to the client’s device, or its PIN, or breach the server. However, these solutions have several shortcomings; namely, they (i) require a client to remember multiple secret values to prove its identity, (ii) involve several modular exponentiations, and (iii) are in the non-standard random oracle model. In this work, we present a 2FA protocol that resists such a strong adversary while addressing the above shortcomings. Our protocol requires a client to remember only a single secret value/PIN, does not involve any modular exponentiations, and is in a standard model. It is the first one that offers these features without using trusted chipsets. This protocol also imposes up to 40% lower communication overhead than the state-of-the-art solutions do

    Robust Smart Card based Password Authentication Scheme against Smart Card Security Breach

    Get PDF
    As the most prevailing two-factor authentication mechanism, smart card based password authentication has been a subject of intensive research in the past decade and hundreds of this type of schemes have been proposed. However, most of them were found severely flawed, especially prone to the smart card loss problem, shortly after they were first put forward, no matter the security is heuristically analyzed or formally proved. In SEC\u2712, Wang pointed out that, the main cause of this issue is attributed to the lack of an appropriate security model to fully identify the practical threats. To address the issue, Wang presented three kinds of security models, namely Type I, II and III, and further proposed four concrete schemes, only two of which, i.e. PSCAV and PSCAb, are claimed to be secure under the harshest model, i.e. Type III security model. However, in this paper, we demonstrate that PSCAV still cannot achieve the claimed security goals and is vulnerable to an offline password guessing attack and other attacks in the Type III security mode, while PSCAb has several practical pitfalls. As our main contribution, a robust scheme is presented to cope with the aforementioned defects and it is proven to be secure in the random oracle model. Moreover, the analysis demonstrates that our scheme meets all the proposed criteria and eliminates several hard security threats that are difficult to be tackled at the same time in previous scholarship
    corecore