4 research outputs found

    Cube-Based Cryptanalysis of Subterranean-SAE

    Get PDF
    Subterranean 2.0 designed by Daemen, Massolino and Rotella is a Round 2 candidate of the NIST Lightweight Cryptography Standardization process. In the official document of Subterranean 2.0, the designers have analyzed the state collisions in unkeyed absorbing by reducing the number of rounds to absorb the message from 2 to 1. However, little cryptanalysis of the authenticated encryption scheme Subterranean-SAE is made. For Subterranean-SAE, the designers introduce 8 blank rounds to separate the controllable input and output, and expect that 8 blank rounds can achieve a sufficient diffusion. Therefore, it is meaningful to investigate the security by reducing the number of blank rounds. Moreover, the designers make no security claim but expect a non-trivial effort to achieve full-state recovery in a nonce-misuse scenario. In this paper, we present the first practical full-state recovery attack in a nonce-misuse scenario with data complexity of 2132^{13} 32-bit blocks. In addition, in a nonce-respecting scenario and if the number of blank rounds is reduced to 4, we can mount a key-recovery attack with 21222^{122} calls to the internal permutation of Subterranean-SAE and 269.52^{69.5} 32-bit blocks. A distinguishing attack with 2332^{33} calls to the internal permutation of Subterranean-SAE and 2332^{33} 32-bit blocks is achieved as well. Our cryptanalysis does not threaten the security claim for Subterranean-SAE and we hope it can enhance the understanding of Subterranean-SAE

    Security Analysis of Subterranean 2.0

    Get PDF
    Subterranean 2.0 is a cipher suite that can be used for hashing, authenticated encryption, MAC computation, etc. It was designed by Daemen, Massolino, Mehrdad, and Rotella, and has been selected as a candidate in the second round of NIST\u27s lightweight cryptography standardization process. Subterranean 2.0 is a duplex-based construction and utilizes a single-round permutation in the duplex. It is the simplicity of the round function that makes it an attractive target of cryptanalysis. In this paper, we examine the single-round permutation in various phases of Subterranean 2.0 and specify three related attack scenarios that deserve further investigation: keystream biases in the keyed squeezing phase, state collisions in the keyed absorbing phase, and one-round differential analysis in the nonce-misuse setting. To facilitate cryptanalysis in the first two scenarios, we novelly propose a set of size-reduced toy versions of Subterranean 2.0: Subterranean-m. Then we make an observation for the first time on the resemblance between the non-linear layer in the round function of Subterranean 2.0 and SIMON\u27s round function. Inspired by the existing work on SIMON, we propose explicit formulas for computing the exact correlation of linear trails of Subterranean 2.0 and other ciphers utilizing similar non-linear operations. We then construct our models for searching trails to be used in the keystream bias evaluation and state collision attacks. Our results show that most instances of Subterranean-m are secure in the first two attack scenarios but there exist instances that are not. Further, we find a flaw in the designers\u27 reasoning of Subterranean 2.0\u27s linear bias but support the designers\u27 claim that there is no linear bias measurable from at most 2962^{96} data blocks. Due to the time-consuming search, the security of Subterranean 2.0 against the state collision attack in keyed modes still remains an open question. Finally, we observe that one-round differentials allow to recover state bits in the nonce-misuse setting. By proposing nested one-round differentials, we obtain a sufficient number of state bits, leading to a practical state recovery with only 20 repetitions of the nonce and 88 blocks of data. It is noted that our work does not threaten the security of Subterranean 2.0

    Ten years of cube attacks

    Get PDF
    In 2009, Dinur and Shamir proposed the cube attack, an algebraic cryptanalysis technique that only requires black box access to a target cipher. Since then, this attack has received both many criticisms and endorsements from crypto community; this work aims at revising and collecting the many attacks that have been proposed starting from it. We categorise all of these attacks in five classes; for each class, we provide a brief summary description along with the state-of-the-art references and the most recent cryptanalysis results. Furthermore, we extend and refine the new notation we proposed in 2021 and we use it to provide a consistent definition for each attack family. Finally, in the appendix, we provide an in-depth description of the kite attack framework, a cipher independent tool we firstly proposed in 2018 that implements the kite attack on GPUs. To prove its effectiveness, we use Mickey2.0 as a use case, showing how to embed it in the framework

    Cube-Based Cryptanalysis of Subterranean-SAE

    No full text
    Subterranean 2.0 designed by Daemen, Massolino and Rotella is a Round 2 candidate of the NIST Lightweight Cryptography Standardization process. In the official document of Subterranean 2.0, the designers have analyzed the state collisions in unkeyed absorbing by reducing the number of rounds to absorb the message from 2 to 1. However, little cryptanalysis of the authenticated encryption scheme Subterranean-SAE is made. For Subterranean-SAE, the designers introduce 8 blank rounds to separate the controllable input and output, and expect that 8 blank rounds can achieve a sufficient diffusion. Therefore, it is meaningful to investigate the security by reducing the number of blank rounds. Moreover, the designers make no security claim but expect a non-trivial effort to achieve full-state recovery in a nonce-misuse scenario. In this paper, we present the first practical full-state recovery attack in a nonce-misuse scenario with data complexity of 213 32-bit blocks. In addition, in a nonce-respecting scenario and if the number of blank rounds is reduced to 4, we can mount a key-recovery attack with 2122 calls to the internal permutation of Subterranean-SAE and 269.5 32-bit blocks. A distinguishing attack with 233 calls to the internal permutation of Subterranean-SAE and 233 32-bit blocks is achieved as well. Our cryptanalysis does not threaten the security claim for Subterranean-SAE and we hope it can enhance the understanding of Subterranean-SAE
    corecore