48 research outputs found

    Privacy protection for telecare medicine information systems using a chaotic map-based three-factor authenticated key agreement scheme

    Get PDF
    Telecare Medicine Information Systems (TMIS) provides flexible and convenient e-health care. However the medical records transmitted in TMIS are exposed to unsecured public networks, so TMIS are more vulnerable to various types of security threats and attacks. To provide privacy protection for TMIS, a secure and efficient authenticated key agreement scheme is urgently needed to protect the sensitive medical data. Recently, Mishra et al. proposed a biometrics-based authenticated key agreement scheme for TMIS by using hash function and nonce, they claimed that their scheme could eliminate the security weaknesses of Yan et al.’s scheme and provide dynamic identity protection and user anonymity. In this paper, however, we demonstrate that Mishra et al.’s scheme suffers from replay attacks, man-in-the-middle attacks and fails to provide perfect forward secrecy. To overcome the weaknesses of Mishra et al.’s scheme, we then propose a three-factor authenticated key agreement scheme to enable the patient enjoy the remote healthcare services via TMIS with privacy protection. The chaotic map-based cryptography is employed in the proposed scheme to achieve a delicate balance of security and performance. Security analysis demonstrates that the proposed scheme resists various attacks and provides several attractive security properties. Performance evaluation shows that the proposed scheme increases efficiency in comparison with other related schemes

    Cryptanalysis on Secure ECC based Mutual Authentication Protocol for Cloud-Assisted TMIS

    Full text link
    The creation of TMIS (Telecare Medical Information System) makes it simpler for patients to receive healthcare services and opens up options for seeking medical attention and storing medical records with access control. With Wireless Medical Sensor Network and cloud-based architecture, TMIS gives the chance to patients to collect their physical health information from medical sensors and also upload this information to the cloud through their mobile devices. The communication is held through internet connectivity, therefore security and privacy are the main motive aspects of a secure cloud-assisted TMIS. However, because very sensitive data is transmitted between patients and doctors through the cloud server, thus security protection is important for this system. Recently, Kumar et al designed a mutual authentication protocol for cloud-assisted TMIS based on ECC [2]. In this paper, we revisited this scheme and traced out that their scheme has some significant pitfalls like health report revelation attack, and report confidentiality. In this study, we will provide the cryptanalysis of the scheme developed by Kumar et al

    Privacy Protection for Telecare Medicine Information Systems Using a Chaotic Map-Based Three-Factor Authenticated Key Agreement Scheme

    Full text link

    Security analysis and enhancements of an improved multi-factor biometric authentication scheme

    Get PDF
    Many remote user authentication schemes have been designed and developed to establish secure and authorized communication between a user and server over an insecure channel. By employing a secure remote user authentication scheme, a user and server can authenticate each other and utilize advanced services. In 2015, Cao and Ge demonstrated that An's scheme is also vulnerable to several attacks and does not provide user anonymity. They also proposed an improved multi-factor biometric authentication scheme. However, we review and cryptanalyze Cao and Ge's scheme and demonstrate that their scheme fails in correctness and providing user anonymity and is vulnerable to ID guessing attack and server masquerading attack. To overcome these drawbacks, we propose a security-improved authentication scheme that provides a dynamic ID mechanism and better security functionalities. Then, we show that our proposed scheme is secure against various attacks and prove the security of the proposed scheme using BAN Logic.111Ysciescopu
    corecore