24,580 research outputs found
Quantum differential cryptanalysis to the block ciphers
Differential cryptanalysis is one of the most popular methods in attacking
block ciphers. However, there still some limitations in traditional
differential cryptanalysis. On the other hand, researches of quantum algorithms
have made great progress nowadays. This paper proposes two methods to apply
quantum algorithms in differential cryptanalysis, and analysis their
efficiencies and success probabilities. One method is using quantum algorithm
in the high probability differential finding period for every S-Box. The second
method is taking the encryption as a whole, using quantum algorithm in this
process.Comment: 11 pages, no figure
Survey and Benchmark of Block Ciphers for Wireless Sensor Networks
Cryptographic algorithms play an important role in the security architecture of wireless sensor networks (WSNs). Choosing the most storage- and energy-efficient block cipher is essential, due to the facts that these networks are meant to operate without human intervention for a long period of time with little energy supply, and that available storage is scarce on these sensor nodes. However, to our knowledge, no systematic work has been done in this area so far.We construct an evaluation framework in which we first identify the candidates of block ciphers suitable for WSNs, based on existing literature and authoritative recommendations. For evaluating and assessing these candidates, we not only consider the security properties but also the storage- and energy-efficiency of the candidates. Finally, based on the evaluation results, we select the most suitable ciphers for WSNs, namely Skipjack, MISTY1, and Rijndael, depending on the combination of available memory and required security (energy efficiency being implicit). In terms of operation mode, we recommend Output Feedback Mode for pairwise links but Cipher Block Chaining for group communications
Multidimensional Zero-Correlation Linear Cryptanalysis of the Block Cipher KASUMI
The block cipher KASUMI is widely used for security in many synchronous
wireless standards. It was proposed by ETSI SAGE for usage in 3GPP (3rd
Generation Partnership Project) ciphering algorthms in 2001. There are a great
deal of cryptanalytic results on KASUMI, however, its security evaluation
against the recent zero-correlation linear attacks is still lacking so far. In
this paper, we select some special input masks to refine the general 5-round
zero-correlation linear approximations combining with some observations on the
functions and then propose the 6-round zero-correlation linear attack on
KASUMI. Moreover, zero-correlation linear attacks on the last 7-round KASUMI
are also introduced under some weak keys conditions. These weak keys take
of the whole key space.
The new zero-correlation linear attack on the 6-round needs about
encryptions with known plaintexts. For the attack under weak keys
conditions on the last 7 round, the data complexity is about known
plaintexts and the time complexity encryptions
- …
