24,580 research outputs found

    Quantum differential cryptanalysis to the block ciphers

    Full text link
    Differential cryptanalysis is one of the most popular methods in attacking block ciphers. However, there still some limitations in traditional differential cryptanalysis. On the other hand, researches of quantum algorithms have made great progress nowadays. This paper proposes two methods to apply quantum algorithms in differential cryptanalysis, and analysis their efficiencies and success probabilities. One method is using quantum algorithm in the high probability differential finding period for every S-Box. The second method is taking the encryption as a whole, using quantum algorithm in this process.Comment: 11 pages, no figure

    Survey and Benchmark of Block Ciphers for Wireless Sensor Networks

    Get PDF
    Cryptographic algorithms play an important role in the security architecture of wireless sensor networks (WSNs). Choosing the most storage- and energy-efficient block cipher is essential, due to the facts that these networks are meant to operate without human intervention for a long period of time with little energy supply, and that available storage is scarce on these sensor nodes. However, to our knowledge, no systematic work has been done in this area so far.We construct an evaluation framework in which we first identify the candidates of block ciphers suitable for WSNs, based on existing literature and authoritative recommendations. For evaluating and assessing these candidates, we not only consider the security properties but also the storage- and energy-efficiency of the candidates. Finally, based on the evaluation results, we select the most suitable ciphers for WSNs, namely Skipjack, MISTY1, and Rijndael, depending on the combination of available memory and required security (energy efficiency being implicit). In terms of operation mode, we recommend Output Feedback Mode for pairwise links but Cipher Block Chaining for group communications

    Multidimensional Zero-Correlation Linear Cryptanalysis of the Block Cipher KASUMI

    Full text link
    The block cipher KASUMI is widely used for security in many synchronous wireless standards. It was proposed by ETSI SAGE for usage in 3GPP (3rd Generation Partnership Project) ciphering algorthms in 2001. There are a great deal of cryptanalytic results on KASUMI, however, its security evaluation against the recent zero-correlation linear attacks is still lacking so far. In this paper, we select some special input masks to refine the general 5-round zero-correlation linear approximations combining with some observations on the FLFL functions and then propose the 6-round zero-correlation linear attack on KASUMI. Moreover, zero-correlation linear attacks on the last 7-round KASUMI are also introduced under some weak keys conditions. These weak keys take 2142^{-14} of the whole key space. The new zero-correlation linear attack on the 6-round needs about 2852^{85} encryptions with 262.82^{62.8} known plaintexts. For the attack under weak keys conditions on the last 7 round, the data complexity is about 262.12^{62.1} known plaintexts and the time complexity 2110.52^{110.5} encryptions
    corecore