800 research outputs found

    Overcoming I/O bottleneck in superconducting quantum computing: multiplexed qubit control with ultra-low-power, base-temperature cryo-CMOS multiplexer

    Full text link
    Large-scale superconducting quantum computing systems entail high-fidelity control and readout of large numbers of qubits at millikelvin temperatures, resulting in a massive input-output bottleneck. Cryo-electronics, based on complementary metal-oxide-semiconductor (CMOS) technology, may offer a scalable and versatile solution to overcome this bottleneck. However, detrimental effects due to cross-coupling between the electronic and thermal noise generated during cryo-electronics operation and the qubits need to be avoided. Here we present an ultra-low power radio-frequency (RF) multiplexing cryo-electronics solution operating below 15 mK that allows for control and interfacing of superconducting qubits with minimal cross-coupling. We benchmark its performance by interfacing it with a superconducting qubit and observe that the qubit's relaxation times (T1T_1) are unaffected, while the coherence times (T2T_2) are only minimally affected in both static and dynamic operation. Using the multiplexer, single qubit gate fidelities above 99.9%, i.e., well above the threshold for surface-code based quantum error-correction, can be achieved with appropriate thermal filtering. In addition, we demonstrate the capability of time-division-multiplexed qubit control by dynamically windowing calibrated qubit control pulses. Our results show that cryo-CMOS multiplexers could be used to significantly reduce the wiring resources for large-scale qubit device characterization, large-scale quantum processor control and quantum error correction protocols.Comment: 16+6 pages, 4+1+5 figures, 1 tabl

    Scalable multi-chip quantum architectures enabled by cryogenic hybrid wireless/quantum-coherent network-in-package

    Full text link
    The grand challenge of scaling up quantum computers requires a full-stack architectural standpoint. In this position paper, we will present the vision of a new generation of scalable quantum computing architectures featuring distributed quantum cores (Qcores) interconnected via quantum-coherent qubit state transfer links and orchestrated via an integrated wireless interconnect.Comment: 5 pages, 2 figures, accepted for presentation at the IEEE International Symposium on Circuits and Systems (ISCAS) 202
    corecore