4 research outputs found

    Crowdsourcing through cognitive opportunistic networks

    Get PDF
    Until recently crowdsourcing has been primarily conceived as an online activity to harness resources for problem solving. However the emergence of opportunistic networking (ON) has opened up crowdsourcing to the spatial domain. In this paper we bring the ON model for potential crowdsourcing in the smart city envi- ronment. We introduce cognitive features to the ON that allow users’ mobile devices to become aware of the surrounding physical environment. Specifically, we exploit cognitive psychology studies on dynamic memory structures and cognitive heuristics, i.e. mental models that describe how the human brain handles decision- making amongst complex and real-time stimuli. Combined with ON, these cognitive features allow devices to act as proxies in the cyber-world of their users and exchange knowledge to deliver awareness of places in an urban environment. This is done through tags associated with locations. They represent features that are perceived by humans about a place. We consider the extent to which this knowledge becomes available to participants, using interactions with locations and other nodes. This is assessed taking into account a wide range of cognitive parameters. Outcomes are important because this functionality could support a new type of recommendation system that is independent of the traditional forms of networking

    Energy and QoE aware Placement of Applications and Data at the Edge

    Get PDF
    Recent years are witnessing extensions of cyber-infrastructures towards distributed environments. The Edge of the network is gaining a central role in the agenda of both infrastructure and application providers. Following the actual distributed structure of such a computational environment, nowadays, many solutions face resource and application management needs in Cloud/Edge continua. One of the most challenging aspects is ensuring highly available computing and data infrastructures while optimizing the system's energy consumption. In this paper, we describe a decentralized solution that limits the energy consumption by the system without failing to match the users' expectations, defined as the services' Quality of Experience (QoE) when accessing data and leveraging applications at the Edge. Experimental evaluations through simulation conducted with PureEdgeSim demonstrate the effectiveness of the approach

    AoI-based Multicast Routing over Voronoi Overlays with Minimal Overhead

    Get PDF
    The increasing pervasive and ubiquitous presence of devices at the edge of the Internet is creating new scenarios for the emergence of novel services and applications. This is particularly true for location- and context-aware services. These services call for new decentralized, self-organizing communication schemes that are able to face issues related to demanding resource consumption constraints, while ensuring efficient locality-based information dissemination and querying. Voronoi-based communication techniques are among the most widely used solutions in this field. However, when used for forwarding messages inside closed areas of the network (called Areas of Interest, AoIs), these solutions generally require a significant overhead in terms of redundant and/or unnecessary communications. This fact negatively impacts both the devices' resource consumption levels, as well as the network bandwidth usage. In order to eliminate all unnecessary communications, in this paper we present the MABRAVO (Multicast Algorithm for Broadcast and Routing over AoIs in Voronoi Overlays) protocol suite. MABRAVO allows to forward information within an AoI in a Voronoi network using only local information, reaching all the devices in the area, and using the lowest possible number of messages, i.e., just one message for each node included in the AoI. The paper presents the mathematical and algorithmic descriptions of MABRAVO, as well as experimental findings of its performance, showing its ability to reduce communication costs to the strictly minimum required.Comment: Submitted to: IEEE Access; CodeOcean: DOI:10.24433/CO.1722184.v1; code: https://github.com/michelealbano/mabrav

    Crowdsourcing through Cognitive Opportunistic Networks

    No full text
    Until recently crowdsourcing has been primarily conceived as an online activity to harness resources for problem solving. However the emergence of opportunistic networking (ON) has opened up crowdsourcing to the spatial domain. In this paper we bring the ON model for potential crowdsourcing in the smart city envi- ronment. We introduce cognitive features to the ON that allow users’ mobile devices to become aware of the surrounding physical environment. Specifically, we exploit cognitive psychology studies on dynamic memory structures and cognitive heuristics, i.e. mental models that describe how the human brain handles decision- making amongst complex and real-time stimuli. Combined with ON, these cognitive features allow devices to act as proxies in the cyber-world of their users and exchange knowledge to deliver awareness of places in an urban environment. This is done through tags associated with locations. They represent features that are perceived by humans about a place. We consider the extent to which this knowledge becomes available to participants, using interactions with locations and other nodes. This is assessed taking into account a wide range of cognitive parameters. Outcomes are important because this functionality could support a new type of recommendation system that is independent of the traditional forms of networking
    corecore