255 research outputs found

    ๋ฌด์ธํ•ญ๊ณต๊ธฐ ์šด์˜์„ ์œ„ํ•œ ๋ฎ๊ฐœ ๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ ๋Œ€๊ทœ๋ชจ ์ตœ์ ํ™” ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2021. 2. ๋ฌธ์ผ๊ฒฝ.There is increasing interest in the unmanned aerial vehicle (UAV) in various fields of the industry, starting from the surveillance to the logistics. After introducing the smart city, there are attempts to utilize UAVs in the public service sector by connecting individual components of the system with both information and physical goods. In this dissertation, the UAV operation problems in the public service sector is modeled in the set covering approach. There is a vast literature on the facility location and set covering problems. However, when operating UAVs in the system, the plan has to make the most of the flexibility of the UAV, but also has to consider its physical limitation. We noticed a gap between the related, existing approaches and the technologies required in the field. That is, the new characteristics of the UAV hinder the existing solution algorithms, or a brand-new approach is required. In this dissertation, two operation problems to construct an emergency wireless network in a disaster situation by UAV and one location-allocation problem of the UAV emergency medical service (EMS) facility are proposed. The reformulation to the extended formulation and the corresponding branch-and-price algorithm can overcome the limitations and improve the continuous or LP relaxation bounds, which are induced by the UAV operation. A brief explanation of the UAV operation on public service, the related literature, and the brief explanation of the large-scale optimization techniques are introduced in Chapter 1, along with the research motivations and contributions, and the outline of the dissertations. In Chapter 2, the UAV set covering problem is defined. Because the UAV can be located without predefined candidate positions, more efficient operation becomes feasible, but the continuous relaxation bound of the standard formulation is weakened. The large-scale optimization techniques, including the Dantzig-Wolfe decomposition and the branch-and-price algorithm, could improve the continuous relaxation bound and reduce the symmetries of the branching tree and solve the realistic-scaled problems within practical computation time. To avoid numerical instability, two approximation models are proposed, and their approximation ratios are analyzed. In Chapter 3, UAV variable radius set covering problem is proposed with an extra decision on the coverage radius. While implementing the branch-and-price algorithm to the problem, a solvable equivalent formulation of the pricing subproblem is proposed. A heuristic based on the USCP is designed, and the proposed algorithm outperformed the benchmark genetic algorithm proposed in the literature. In Chapter 4, the facility location-allocation problem for UAV EMS is defined. The quadratic variable coverage constraint is reformulated to the linear equivalent formulation, and the nonlinear problem induced by the robust optimization approach is linearized. While implementing the large-scale optimization techniques, the structure of the subproblem is analyzed, and two solution approaches for the pricing subproblem are proposed, along with a heuristic. The results of the research can be utilized when implementing in the real applications sharing the similar characteristics of UAVs, but also can be used in its abstract formulation.ํ˜„์žฌ, ์ง€์—ญ ๊ฐ์‹œ์—์„œ ๋ฌผ๋ฅ˜๊นŒ์ง€, ๋ฌด์ธํ•ญ๊ณต๊ธฐ์˜ ๋‹ค์–‘ํ•œ ์‚ฐ์—…์—์˜ ์‘์šฉ์ด ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์Šค๋งˆํŠธ ์‹œํ‹ฐ์˜ ๊ฐœ๋…์ด ๋Œ€๋‘๋œ ์ดํ›„, ๋ฌด์ธํ•ญ๊ณต๊ธฐ๋ฅผ ๊ณต๊ณต ์„œ๋น„์Šค ์˜์—ญ์— ํ™œ์šฉํ•˜์—ฌ ๊ฐœ๋ณ„ ์‚ฌํšŒ ์š”์†Œ๋ฅผ ์—ฐ๊ฒฐ, ์ •๋ณด์™€ ๋ฌผ์ž๋ฅผ ๊ตํ™˜ํ•˜๊ณ ์ž ํ•˜๋Š” ์‹œ๋„๊ฐ€ ์ด์–ด์ง€๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ณต๊ณต ์„œ๋น„์Šค ์˜์—ญ์—์„œ์˜ ๋ฌด์ธํ•ญ๊ณต๊ธฐ ์šด์˜ ๋ฌธ์ œ๋ฅผ ์ง‘ํ•ฉ๋ฎ๊ฐœ๋ฌธ์ œ ๊ด€์ ์—์„œ ๋ชจํ˜•ํ™”ํ•˜์˜€๋‹ค. ์„ค๋น„์œ„์น˜๊ฒฐ์ • ๋ฐ ์ง‘ํ•ฉ๋ฎ๊ฐœ๋ฌธ์ œ ์˜์—ญ์— ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์–ด ์žˆ์œผ๋‚˜, ๋ฌด์ธํ•ญ๊ณต๊ธฐ๋ฅผ ์šด์˜ํ•˜๋Š” ์‹œ์Šคํ…œ์˜ ๊ฒฝ์šฐ ๋ฌด์ธํ•ญ๊ณต๊ธฐ๊ฐ€ ๊ฐ–๋Š” ์ž์œ ๋„๋ฅผ ์ถฉ๋ถ„ํžˆ ํ™œ์šฉํ•˜๋ฉด์„œ๋„ ๋ฌด์ธํ•ญ๊ณต๊ธฐ์˜ ๋ฌผ๋ฆฌ์  ํ•œ๊ณ„๋ฅผ ๊ณ ๋ คํ•œ ์šด์˜ ๊ณ„ํš์„ ํ•„์š”๋กœ ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋ณธ ๋ฌธ์ œ์™€ ๊ด€๋ จ๋œ ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ํ˜„์žฅ์ด ํ•„์š”๋กœ ํ•˜๋Š” ๊ธฐ์ˆ ์˜ ๊ดด๋ฆฌ๋ฅผ ์ธ์‹ํ•˜์˜€๋‹ค. ์ด๋Š” ๋‹ค์‹œ ๋งํ•ด, ๋ฌด์ธํ•ญ๊ณต๊ธฐ๊ฐ€ ๊ฐ€์ง€๋Š” ์ƒˆ๋กœ์šด ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜๋ฉด ๊ธฐ์กด์˜ ๋ฌธ์ œ ํ•ด๊ฒฐ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ํ’€๊ธฐ ์–ด๋ ต๊ฑฐ๋‚˜, ํ˜น์€ ์ƒˆ๋กœ์šด ๊ด€์ ์—์„œ์˜ ๋ฌธ์ œ ์ ‘๊ทผ์ด ํ•„์š”ํ•˜๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์žฌ๋‚œ์ด ๋ฐœ์ƒํ•œ ์ง€์—ญ์— ๋ฌด์ธํ•ญ๊ณต๊ธฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ธด๊ธ‰๋ฌด์„ ๋„คํŠธ์›Œํฌ๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๋‘๊ฐ€์ง€ ๋ฌธ์ œ์™€, ๋ฌด์ธํ•ญ๊ณต๊ธฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์‘๊ธ‰์˜๋ฃŒ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๋Š” ์‹œ์„ค์˜ ์œ„์น˜์„ค์ • ๋ฐ ํ• ๋‹น๋ฌธ์ œ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ํ™•์žฅ๋ฌธ์ œ๋กœ์˜ ์žฌ๊ณต์‹ํ™”์™€ ๋ถ„์ง€ํ‰๊ฐ€๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ, ๋ฌด์ธํ•ญ๊ณต๊ธฐ์˜ ํ™œ์šฉ์œผ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ๋ฌธ์ œ ํ•ด๊ฒฐ ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ  ์™„ํ™”ํ•œ๊ณ„๋ฅผ ๊ฐœ์„ ํ•˜์˜€๋‹ค. ๊ณต๊ณต ์„œ๋น„์Šค ์˜์—ญ์—์„œ์˜ ๋ฌด์ธํ•ญ๊ณต๊ธฐ ์šด์˜, ๊ด€๋ จ๋œ ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ๋ณธ ๋…ผ๋ฌธ์—์„œ ์‚ฌ์šฉํ•˜๋Š” ๋Œ€๊ทœ๋ชจ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์— ๋Œ€ํ•œ ๊ฐœ๊ด„์ ์ธ ์„ค๋ช…, ์—ฐ๊ตฌ ๋™๊ธฐ ๋ฐ ๊ธฐ์—ฌ์™€ ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ์„ 1์žฅ์—์„œ ์†Œ๊ฐœํ•œ๋‹ค. 2์žฅ์—์„œ๋Š” ๋ฌด์ธํ•ญ๊ณต๊ธฐ ์ง‘ํ•ฉ๋ฎ๊ฐœ๋ฌธ์ œ๋ฅผ ์ •์˜ํ•œ๋‹ค. ๋ฌด์ธํ•ญ๊ณต๊ธฐ๋Š” ๋ฏธ๋ฆฌ ์ •ํ•ด์ง„ ์œ„์น˜ ์—†์ด ์ž์œ ๋กญ๊ฒŒ ๋น„ํ–‰ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋” ํšจ์œจ์ ์ธ ์šด์˜์ด ๊ฐ€๋Šฅํ•˜๋‚˜, ์•ฝํ•œ ์™„ํ™”ํ•œ๊ณ„๋ฅผ ๊ฐ–๊ฒŒ ๋œ๋‹ค. Dantzig-Wolfe ๋ถ„ํ•ด์™€ ๋ถ„์ง€ํ‰๊ฐ€๋ฒ•์„ ํฌํ•จํ•œ ๋Œ€๊ทœ๋ชจ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์™„ํ™”ํ•œ๊ณ„๋ฅผ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ถ„์ง€๋‚˜๋ฌด์˜ ๋Œ€์นญ์„ฑ์„ ์ค„์—ฌ ์‹ค์ œ ๊ทœ๋ชจ์˜ ๋ฌธ์ œ๋ฅผ ์‹ค์šฉ์ ์ธ ์‹œ๊ฐ„ ์•ˆ์— ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ˆ˜์น˜์  ๋ถˆ์•ˆ์ •์„ฑ์„ ํ”ผํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๋‘ ๊ฐ€์ง€ ์„ ํ˜• ๊ทผ์‚ฌ ๋ชจํ˜•์ด ์ œ์•ˆ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋“ค์˜ ๊ทผ์‚ฌ ๋น„์œจ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. 3์žฅ์—์„œ๋Š” ๋ฌด์ธํ•ญ๊ณต๊ธฐ ์ง‘ํ•ฉ๋ฎ๊ฐœ๋ฌธ์ œ๋ฅผ ์ผ๋ฐ˜ํ™”ํ•˜์—ฌ ๋ฌด์ธํ•ญ๊ณต๊ธฐ ๊ฐ€๋ณ€๋ฐ˜๊ฒฝ ์ง‘ํ•ฉ๋ฎ๊ฐœ๋ฌธ์ œ๋ฅผ ์ •์˜ํ•œ๋‹ค. ๋ถ„์ง€ํ‰๊ฐ€๋ฒ•์„ ์ ์šฉํ•˜๋ฉด์„œ ํ•ด๊ฒฐ ๊ฐ€๋Šฅํ•œ ํ‰๊ฐ€ ๋ถ€๋ฌธ์ œ๋ฅผ ์ œ์•ˆํ•˜์˜€์œผ๋ฉฐ, ํœด๋ฆฌ์Šคํ‹ฑ์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ํ’€์ด ๋ฐฉ๋ฒ•๋“ค์ด ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•œ ๋ฒค์น˜๋งˆํฌ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋Šฅ๊ฐ€ํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. 4์žฅ์—์„œ๋Š” ๋ฌด์ธํ•ญ๊ณต๊ธฐ ์‘๊ธ‰์˜๋ฃŒ์„œ๋น„์Šค๋ฅผ ์šด์˜ํ•˜๋Š” ์‹œ์„ค์˜ ์œ„์น˜์„ค์ • ๋ฐ ํ• ๋‹น๋ฌธ์ œ๋ฅผ ์ •์˜ํ•˜์˜€๋‹ค. 2์ฐจ ๊ฐ€๋ณ€๋ฐ˜๊ฒฝ ๋ฒ”์œ„์ œ์•ฝ์ด ์„ ํ˜•์˜ ๋™์น˜์ธ ์ˆ˜์‹์œผ๋กœ ์žฌ๊ณต์‹ํ™”๋˜์—ˆ์œผ๋ฉฐ, ๊ฐ•๊ฑด์ตœ์ ํ™” ๊ธฐ๋ฒ•์œผ๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ๋น„์„ ํ˜• ๋ฌธ์ œ๋ฅผ ์„ ํ˜•ํ™”ํ•˜์˜€๋‹ค. ๋Œ€๊ทœ๋ชจ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜๋ฉด์„œ, ํ‰๊ฐ€ ๋ถ€๋ฌธ์ œ์˜ ๊ตฌ์กฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ๋‘ ๊ฐ€์ง€ ํ’€์ด ๊ธฐ๋ฒ•๊ณผ ํœด๋ฆฌ์Šคํ‹ฑ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” ๋ฌด์ธํ•ญ๊ณต๊ธฐ์™€ ๋น„์Šทํ•œ ํŠน์ง•์„ ๊ฐ€์ง€๋Š” ์‹ค์ œ ์‚ฌ๋ก€์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ถ”์ƒ์ ์ธ ๋ฌธ์ œ๋กœ์จ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ๊ทธ๋Œ€๋กœ ํ™œ์šฉ๋  ์ˆ˜๋„ ์žˆ๋‹ค.Abstract i Contents vii List of Tables ix List of Figures xi Chapter 1 Introduction 1 1.1 Unmanned aerial vehicle operation on public services 1 1.2 Facility location problems 3 1.3 Large-scale optimization techniques 4 1.4 Research motivations and contributions 6 1.5 Outline of the dissertation 12 Chapter 2 Unmanned aerial vehicle set covering problem considering fixed-radius coverage constraint 14 2.1 Introduction 14 2.2 Problem definition 20 2.2.1 Problem description 22 2.2.2 Mathematical formulation 23 2.2.3 Discrete approximation model 26 2.3 Branch-and-price approach for the USCP 28 2.3.1 An extended formulation of the USCP 29 2.3.2 Branching strategies 34 2.3.3 Pairwise-conflict constraint approximation model based on Jung's theorem 35 2.3.4 Comparison of the approximation models 40 2.3.5 Framework of the solution algorithm for the PCBP model 42 2.4 Computational experiments 44 2.4.1 Datasets used in the experiments 44 2.4.2 Algorithmic performances 46 2.5 Solutions and related problems of the USCP 61 2.6 Summary 64 Chapter 3 Unmanned aerial vehicle variable radius set covering problem 66 3.1 Introduction 66 3.2 Problem definition 70 3.2.1 Mathematical model 72 3.3 Branch-and-price approach to the UVCP 76 3.4 Minimum covering circle-based approach 79 3.4.1 Formulation of the pricing subproblem II 79 3.4.2 Equivalence of the subproblem 82 3.5 Fixed-radius heuristic 84 3.6 Computational experiments 86 3.6.1 Datasets used in the experiments 88 3.6.2 Solution algorithms 91 3.6.3 Algorithmic performances 94 3.7 Summary 107 Chapter 4 Facility location-allocation problem for unmanned aerial vehicle emergency medical service 109 4.1 Introduction 109 4.2 Related literature 114 4.3 Location-allocation model for UEMS facility 117 4.3.1 Problem definition 118 4.3.2 Mathematical formulation 120 4.3.3 Linearization of the quadratic variable coverage distance function 124 4.3.4 Linear reformulation of standard formulation 125 4.4 Solution algorithms 126 4.4.1 An extended formulation of the ULAP 126 4.4.2 Branching strategy 129 4.4.3 Robust disjunctively constrained integer knapsack problem 131 4.4.4 MILP reformulation approach 132 4.4.5 Decomposed DP approach 133 4.4.6 Restricted master heuristic 136 4.5 Computational experiments 137 4.5.1 Datasets used in the experiments 137 4.5.2 Algorithmic performances 140 4.5.3 Analysis of the branching strategy and the solution approach of the pricing subproblem 150 4.6 Summary 157 Chapter 5 Conclusions and future research 160 5.1 Summary 160 5.2 Future research 163 Appendices 165 A Comparison of the computation times and objective value of the proposed algorithms 166 Bibliography 171 ๊ตญ๋ฌธ์ดˆ๋ก 188 ๊ฐ์‚ฌ์˜ ๊ธ€ 190Docto

    Industria 4.0 e manifattura in cittร : uno sviluppo verticale possibile

    Get PDF
    open2noLa deindustrializzazione ha spostato le fabbriche e i posti di lavoro altrove, creando dei vuoti, non solo spaziali, nelle cittร  occidentali. La definizione di quarta rivoluzione industriale ingloba la tendenza della manifattura moderna a produrre con metodologie e sistemi innovativi, sfruttando il sempre crescente sviluppo delle tecnologie ICT e adattandolo per le applicazioni in fabbrica. Lo stabilimento produttivo cambia, sia per la conformazione di piรน sistemi che interagiscono tra loro che per una conseguente occupazione degli spazi. Lโ€™articolo analizza lo scenario evolutivo della produzione industriale e descrive le modalitร  con cui alcune attivitร  possono svilupparsi verticalmente, creando i presupposti per una localizzazione in cittร .openA. Ciaramella, A. CelaniCiaramella, A.; Celani, A

    Industry 4.0 and manufacturing in the city: a possible vertical development

    Get PDF
    Deindustrialization has moved factories and jobs elsewhere, creating voids, not just space, in Western cities. The definition of the fourth industrial revolution incorporates the tendency of modern manufacturing to produce with innovative methodologies and systems, exploiting the ever-increasing development of ICT technologies and adapting it for factory applications. The production plant changes, both for the conformation of several systems that interact with each other and for a consequent occupation of the spaces. The article analyzes the evolutionary scenario of industrial production and describes the ways in which some activities can develop vertically, creating the conditions for a location in the city

    Scalable Methods to Collect and Visualize Sidewalk Accessibility Data for People with Mobility Impairments

    Get PDF
    Poorly maintained sidewalks pose considerable accessibility challenges for people with mobility impairments. Despite comprehensive civil rights legislation of Americans with Disabilities Act, many city streets and sidewalks in the U.S. remain inaccessible. The problem is not just that sidewalk accessibility fundamentally affects where and how people travel in cities, but also that there are few, if any, mechanisms to determine accessible areas of a city a priori. To address this problem, my Ph.D. dissertation introduces and evaluates new scalable methods for collecting data about street-level accessibility using a combination of crowdsourcing, automated methods, and Google Street View (GSV). My dissertation has four research threads. First, we conduct a formative interview study to establish a better understanding of how people with mobility impairments currently assess accessibility in the built environment and the role of emerging location-based technologies therein. The study uncovers the existing methods for assessing accessibility of physical environment and identify useful features of future assistive technologies. Second, we develop and evaluate scalable crowdsourced accessibility data collection methods. We show that paid crowd workers recruited from an online labor marketplace can find and label accessibility attributes in GSV with accuracy of 81%. This accuracy improves to 93% with quality control mechanisms such as majority vote. Third, we design a system that combines crowdsourcing and automated methods to increase data collection efficiency. Our work shows that by combining crowdsourcing and automated methods, we can increase data collection efficiency by 13% without sacrificing accuracy. Fourth, we develop and deploy a web tool that lets volunteers to help us collect the street-level accessibility data from Washington, D.C. As of writing this dissertation, we have collected the accessibility data from 20% of the streets in D.C. We conduct a preliminary evaluation on how the said web tool is used. Finally, we implement proof-of-concept accessibility-aware applications with accessibility data collected with the help of volunteers. My dissertation contributes to the accessibility, computer science, and HCI communities by: (i) extending the knowledge of how people with mobility impairments interact with technology to navigate in cities; (ii) introducing the first work that demonstrates that GSV is a viable source for learning about the accessibility of the physical world; (iii) introducing the first method that combines crowdsourcing and automated methods to remotely collect accessibility information; (iv) deploying interactive web tools that allow volunteers to help populate the largest dataset about street-level accessibility of the world; and (v) demonstrating accessibility-aware applications that empower people with mobility impairments

    A Planning based Evaluation of Spatial Data Quality of OpenStreetMap Building Footprints in Canada

    Get PDF
    OpenStreetMap (OSM) is an editable world map where users can create and retrieve data. Building footprints are an OSM dataset that is of particular interest, as this data has many useful applications for planners and academic professionals. Measuring the spatial data quality of OSM building footprints remains a challenge as there are numerous quality measures that can be used and existing studies have focused on other OSM datasets or rather a single quality measure. The study performed in this thesis developed a set of ArcGIS models to test numerous spatial data quality measures for OSM building footprints in a sample of mid-sized Canadian municipalities and gain a comprehensive understanding of spatial data quality. The models performed tests by comparing to municipal datasets as well as determining other quality measures without a reference dataset. The results of this study found that the overall spatial data quality of OSM building footprints varies across mid-sized municipalities in Canada. There is no link between a municipalityโ€™s location or perceived importance and the level of spatial data quality. The study also found that commercial areas have a higher level of completeness than residential areas. While the models worked well to test numerous spatial data quality measures for building footprints and can be used by others on other building footprint datasets, there exist some limitations. Certain tests that identify potential building footprint errors need to be checked to see if they are indeed errors. Also, the models were not able to measure any aspect of shape metrics. Suggestions for further studies include measuring shape metrics of building footprints from OSM as well as encouraging and subsequently monitoring OSM contributions in a particular area

    Achieving broad access to satellite control research with zero robotics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2013.This thesis was scanned as part of an electronic thesis pilot project.Cataloged from PDF version of thesis.Includes bibliographical references (p. 307-313).Since operations began in 2006, the SPHERES facility, including three satellites aboard the International Space Station (ISS), has demonstrated many future satellite technologies in a true microgravity environment and established a model for developing successful ISS payloads. In 2009, the Zero Robotics program began with the goal of leveraging the resources of SPHERES as a tool for Science, Technology, Engineering, and Math education through a unique student robotics competition. Since the first iteration with two teams, the program has grown over four years into an international tournament involving more than two thousand student competitors and has given hundreds of students the experience of running experiments on the ISS. Zero Robotics tournaments involve an annually updated challenge motivated by a space theme and designed to match the hardware constraints of the SPHERES facility. The tournament proceeds in several phases of increasing difficulty, including a multi-week collaboration period where geographically separated teams work together through the provided tools to write software for SPHERES. Students initially compete in a virtual, online simulation environment, then transition to hardware for the final live championship round aboard the ISS. Along the way, the online platform ensures compatibility with the satellite hardware and provides feedback in the form of 3D simulation animations. During each competition phase, a continuous scoring system allows competitors to incrementally explore new strategies while striving for a seat in the championship. This thesis will present the design of the Zero Robotics competition and supporting online environment and tools that enable users from around the world to successfully write computer programs for satellites. The central contribution is a framework for building virtual platforms that serve as surrogates for limited availability hardware facilities. The framework includes the elaboration of the core principles behind the design of Zero Robotics along with examples and lessons from the implementation of the competition. The virtual platform concept is further extended with a web-based architecture for writing, compiling, simulating, and analyzing programs for a dynamic robot. A standalone and key enabling component of the architecture is a pattern for building fast, high fidelity, web-based simulations. For control of the robots, an easy to use programming interface for controlling 6 degree-of-freedom (6DOF) satellites is presented, along with a lightweight supervisory control law to prevent collisions between satellites without user action. This work also contributes a new form of student robotics competition, including the unique features of model-based online simulation, programming, 6DOF dynamics, a multi-week team collaboration phase, and the chance to test satellites aboard the ISS. Scoring during the competition is made possible by possible by a game-agnostic scoring algorithm, which has been demonstrated during a tournament season and improved for responsiveness. Lastly, future directions are suggested for improving the tournament including a detailed initial exploration of creating open-ended Monte Carlo analysis tools.by Jacob G. Katz.Ph.D
    • โ€ฆ
    corecore