2,940 research outputs found

    Crowd region detection in outdoor scenes using color spaces

    Get PDF

    Automating the construction of scene classifiers for content-based video retrieval

    Get PDF
    This paper introduces a real time automatic scene classifier within content-based video retrieval. In our envisioned approach end users like documentalists, not image processing experts, build classifiers interactively, by simply indicating positive examples of a scene. Classification consists of a two stage procedure. First, small image fragments called patches are classified. Second, frequency vectors of these patch classifications are fed into a second classifier for global scene classification (e.g., city, portraits, or countryside). The first stage classifiers can be seen as a set of highly specialized, learned feature detectors, as an alternative to letting an image processing expert determine features a priori. We present results for experiments on a variety of patch and image classes. The scene classifier has been used successfully within television archives and for Internet porn filtering

    Crowd detection and counting using a static and dynamic platform: state of the art

    Get PDF
    Automated object detection and crowd density estimation are popular and important area in visual surveillance research. The last decades witnessed many significant research in this field however, it is still a challenging problem for automatic visual surveillance. The ever increase in research of the field of crowd dynamics and crowd motion necessitates a detailed and updated survey of different techniques and trends in this field. This paper presents a survey on crowd detection and crowd density estimation from moving platform and surveys the different methods employed for this purpose. This review category and delineates several detections and counting estimation methods that have been applied for the examination of scenes from static and moving platforms

    Matterport3D: Learning from RGB-D Data in Indoor Environments

    Full text link
    Access to large, diverse RGB-D datasets is critical for training RGB-D scene understanding algorithms. However, existing datasets still cover only a limited number of views or a restricted scale of spaces. In this paper, we introduce Matterport3D, a large-scale RGB-D dataset containing 10,800 panoramic views from 194,400 RGB-D images of 90 building-scale scenes. Annotations are provided with surface reconstructions, camera poses, and 2D and 3D semantic segmentations. The precise global alignment and comprehensive, diverse panoramic set of views over entire buildings enable a variety of supervised and self-supervised computer vision tasks, including keypoint matching, view overlap prediction, normal prediction from color, semantic segmentation, and region classification

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos

    Full text link
    Wearable cameras stand out as one of the most promising devices for the upcoming years, and as a consequence, the demand of computer algorithms to automatically understand the videos recorded with them is increasing quickly. An automatic understanding of these videos is not an easy task, and its mobile nature implies important challenges to be faced, such as the changing light conditions and the unrestricted locations recorded. This paper proposes an unsupervised strategy based on global features and manifold learning to endow wearable cameras with contextual information regarding the light conditions and the location captured. Results show that non-linear manifold methods can capture contextual patterns from global features without compromising large computational resources. The proposed strategy is used, as an application case, as a switching mechanism to improve the hand-detection problem in egocentric videos.Comment: Submitted for publicatio
    corecore