1,228 research outputs found

    Understanding People Flow in Transportation Hubs

    Full text link
    In this paper, we aim to monitor the flow of people in large public infrastructures. We propose an unsupervised methodology to cluster people flow patterns into the most typical and meaningful configurations. By processing 3D images from a network of depth cameras, we build a descriptor for the flow pattern. We define a data-irregularity measure that assesses how well each descriptor fits a data model. This allows us to rank flow patterns from highly distinctive (outliers) to very common ones. By discarding outliers, we obtain more reliable key configurations (classes). Synthetic experiments show that the proposed method is superior to standard clustering methods. We applied it in an operational scenario during 14 days in the X-ray screening area of an international airport. Results show that our methodology is able to successfully summarize the representative patterns for such a long observation period, providing relevant information for airport management. Beyond regular flows, our method identifies a set of rare events corresponding to uncommon activities (cleaning, special security and circulating staff).Comment: 10 pages, 19 figure, 1 tabl

    Active Regression with Adaptive Huber Loss

    Full text link
    This paper addresses the scalar regression problem through a novel solution to exactly optimize the Huber loss in a general semi-supervised setting, which combines multi-view learning and manifold regularization. We propose a principled algorithm to 1) avoid computationally expensive iterative schemes while 2) adapting the Huber loss threshold in a data-driven fashion and 3) actively balancing the use of labelled data to remove noisy or inconsistent annotations at the training stage. In a wide experimental evaluation, dealing with diverse applications, we assess the superiority of our paradigm which is able to combine robustness towards noise with both strong performance and low computational cost

    Efficient Discriminative Nonorthogonal Binary Subspace with its Application to Visual Tracking

    Full text link
    One of the crucial problems in visual tracking is how the object is represented. Conventional appearance-based trackers are using increasingly more complex features in order to be robust. However, complex representations typically not only require more computation for feature extraction, but also make the state inference complicated. We show that with a careful feature selection scheme, extremely simple yet discriminative features can be used for robust object tracking. The central component of the proposed method is a succinct and discriminative representation of the object using discriminative non-orthogonal binary subspace (DNBS) which is spanned by Haar-like features. The DNBS representation inherits the merits of the original NBS in that it efficiently describes the object. It also incorporates the discriminative information to distinguish foreground from background. However, the problem of finding the DNBS bases from an over-complete dictionary is NP-hard. We propose a greedy algorithm called discriminative optimized orthogonal matching pursuit (D-OOMP) to solve this problem. An iterative formulation named iterative D-OOMP is further developed to drastically reduce the redundant computation between iterations and a hierarchical selection strategy is integrated for reducing the search space of features. The proposed DNBS representation is applied to object tracking through SSD-based template matching. We validate the effectiveness of our method through extensive experiments on challenging videos with comparisons against several state-of-the-art trackers and demonstrate its capability to track objects in clutter and moving background.Comment: 15 page

    cvpaper.challenge in 2015 - A review of CVPR2015 and DeepSurvey

    Full text link
    The "cvpaper.challenge" is a group composed of members from AIST, Tokyo Denki Univ. (TDU), and Univ. of Tsukuba that aims to systematically summarize papers on computer vision, pattern recognition, and related fields. For this particular review, we focused on reading the ALL 602 conference papers presented at the CVPR2015, the premier annual computer vision event held in June 2015, in order to grasp the trends in the field. Further, we are proposing "DeepSurvey" as a mechanism embodying the entire process from the reading through all the papers, the generation of ideas, and to the writing of paper.Comment: Survey Pape

    A survey on trajectory clustering analysis

    Full text link
    This paper comprehensively surveys the development of trajectory clustering. Considering the critical role of trajectory data mining in modern intelligent systems for surveillance security, abnormal behavior detection, crowd behavior analysis, and traffic control, trajectory clustering has attracted growing attention. Existing trajectory clustering methods can be grouped into three categories: unsupervised, supervised and semi-supervised algorithms. In spite of achieving a certain level of development, trajectory clustering is limited in its success by complex conditions such as application scenarios and data dimensions. This paper provides a holistic understanding and deep insight into trajectory clustering, and presents a comprehensive analysis of representative methods and promising future directions

    Non-Volume Preserving-based Feature Fusion Approach to Group-Level Expression Recognition on Crowd Videos

    Full text link
    Group-level emotion recognition (ER) is a growing research area as the demands for assessing crowds of all sizes is becoming an interest in both the security arena as well as social media. This work extends the earlier ER investigations, which focused on either group-level ER on single images or within a video, by fully investigating group-level expression recognition on crowd videos. In this paper, we propose an effective deep feature level fusion mechanism to model the spatial-temporal information in the crowd videos. In our approach, the fusing process is performed on deep feature domain by a generative probabilistic model, Non-Volume Preserving Fusion (NVPF), that models spatial information relationship. Furthermore, we extend our proposed spatial NVPF approach to spatial-temporal NVPF approach to learn the temporal information between frames. In order to demonstrate the robustness and effectiveness of each component in the proposed approach, three experiments were conducted: (i) evaluation on AffectNet database to benchmark the proposed EmoNet for recognizing facial expression; (ii) evaluation on EmotiW2018 to benchmark the proposed deep feature level fusion mechanism NVPF; and, (iii) examine the proposed TNVPF on an innovative Group-level Emotion on Crowd Videos (GECV) dataset composed of 627 videos collected from publicly available sources. GECV dataset is a collection of videos containing crowds of people. Each video is labeled with emotion categories at three levels: individual faces, group of people and the entire video frame.Comment: Under review at Patter Recognitio

    Modeling of Facial Aging and Kinship: A Survey

    Full text link
    Computational facial models that capture properties of facial cues related to aging and kinship increasingly attract the attention of the research community, enabling the development of reliable methods for age progression, age estimation, age-invariant facial characterization, and kinship verification from visual data. In this paper, we review recent advances in modeling of facial aging and kinship. In particular, we provide an up-to date, complete list of available annotated datasets and an in-depth analysis of geometric, hand-crafted, and learned facial representations that are used for facial aging and kinship characterization. Moreover, evaluation protocols and metrics are reviewed and notable experimental results for each surveyed task are analyzed. This survey allows us to identify challenges and discuss future research directions for the development of robust facial models in real-world conditions

    Comparative study of motion detection methods for video surveillance systems

    Full text link
    The objective of this study is to compare several change detection methods for a mono static camera and identify the best method for different complex environments and backgrounds in indoor and outdoor scenes. To this end, we used the CDnet video dataset as a benchmark that consists of many challenging problems, ranging from basic simple scenes to complex scenes affected by bad weather and dynamic backgrounds. Twelve change detection methods, ranging from simple temporal differencing to more sophisticated methods, were tested and several performance metrics were used to precisely evaluate the results. Because most of the considered methods have not previously been evaluated on this recent large scale dataset, this work compares these methods to fill a lack in the literature, and thus this evaluation joins as complementary compared with the previous comparative evaluations. Our experimental results show that there is no perfect method for all challenging cases, each method performs well in certain cases and fails in others. However, this study enables the user to identify the most suitable method for his or her needs.Comment: 69 pages, 18 figures, journal pape

    From Social to Individuals: a Parsimonious Path of Multi-level Models for Crowdsourced Preference Aggregation

    Full text link
    In crowdsourced preference aggregation, it is often assumed that all the annotators are subject to a common preference or social utility function which generates their comparison behaviors in experiments. However, in reality annotators are subject to variations due to multi-criteria, abnormal, or a mixture of such behaviors. In this paper, we propose a parsimonious mixed-effects model, which takes into account both the fixed effect that the majority of annotators follows a common linear utility model, and the random effect that some annotators might deviate from the common significantly and exhibit strongly personalized preferences. The key algorithm in this paper establishes a dynamic path from the social utility to individual variations, with different levels of sparsity on personalization. The algorithm is based on the Linearized Bregman Iterations, which leads to easy parallel implementations to meet the need of large-scale data analysis. In this unified framework, three kinds of random utility models are presented, including the basic linear model with L2 loss, Bradley-Terry model, and Thurstone-Mosteller model. The validity of these multi-level models are supported by experiments with both simulated and real-world datasets, which shows that the parsimonious multi-level models exhibit improvements in both interpretability and predictive precision compared with traditional HodgeRank.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence as a regular paper. arXiv admin note: substantial text overlap with arXiv:1607.0340

    cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600 Papers Survey

    Full text link
    The paper gives futuristic challenges disscussed in the cvpaper.challenge. In 2015 and 2016, we thoroughly study 1,600+ papers in several conferences/journals such as CVPR/ICCV/ECCV/NIPS/PAMI/IJCV
    • …
    corecore