292,696 research outputs found
An information theory based behavioral model for agent-based crowd simulations
Crowds must be simulated believable in terms of their appearance and behavior to improve a virtual environment’s realism. Due to the complex nature of human behavior, realistic behavior of agents in crowd simulations is still a challenging problem. In this paper, we propose a novel behavioral model which builds analytical maps to control agents’ behavior adaptively with agent-crowd interaction formulations. We introduce information theoretical concepts to construct analytical maps automatically. Our model can be integrated into crowd simulators and enhance their behavioral complexity. We made comparative analyses
of the presented behavior model with measured crowd data and two agent-based crowd simulators
The moving crowd: collecting and processing of crowd behaviour data
The MOVE project focuses on the collection and analyses of crowd behavior data. The two main goals of the project are first, the collection of data through mobile phones. The second goal is to develop new technologies to process and mine the collected data for crowd behaviour analysis. The technology will allow to make advanced interpretations of historic and dynamic mobile crowd data coming from GSM/GPS and from different classes of users (vehicle, pedestrian, indoor/outdoor). Fusion will be made between data coming from different sources (smartphone, navigation device) and external map data. The interpretation will allow the mining of advanced features/geometry from the crowd data as well as interprete the dynamic behaviour of the population
- …
