18 research outputs found

    Crossing the reality gap in evolutionary robotics by promoting transferable controllers

    Full text link
    International audienceThe reality gap, that often makes controllers evolved in simulation inefficient once transferred onto the real system, remains a critical issue in Evolutionary Robotics (ER); it prevents ER application to real-world problems. We hypothesize that this gap mainly stems from a conflict between the efficiency of the solutions in simulation and their transferability from simulation to reality: best solutions in simulation often rely on bad simulated phenomena (e.g. the most dynamic ones). This hypothesis leads to a multi-objective formulation of ER in which two main objectives are optimized via a Pareto-based Multi-Objective Evolutionary Algorithm: (1) the fitness and (2) the transferability. To evaluate this second objective, a simulation-to-reality disparity value is approximated for each controller. The proposed method is applied to the evolution of walking controllers for a real 8-DOF quadrupedal robot. It successfully finds effi- cient and well-transferable controllers with only a few experiments in reality

    20 Years of Reality Gap: a few Thoughts about Simulators in Evolutionary Robotics

    Get PDF
    International audienceSimulators in Evolutionary Robotics (ER) are often considered as a "temporary evil" until experiments can be conducted on real robots. Yet, aaer more than 20 years of ER, most experiments still happen in simulation and nothing suggests that this situation will change in the next few years. In this short paper, we describe the requirements of ER from simulators, what we tried, and how we successfully crossed the "reality gap" in many experiments. We argue that future simulators need to be able to estimate their conndence when they predict a tness value, so that behaviors that are not accurately simulated can be avoided

    Traversing the Reality Gap via Simulator Tuning

    Full text link
    The large demand for simulated data has made the reality gap a problem on the forefront of robotics. We propose a method to traverse the gap by tuning available simulation parameters. Through the optimisation of physics engine parameters, we show that we are able to narrow the gap between simulated solutions and a real world dataset, and thus allow more ready transfer of leaned behaviours between the two. We subsequently gain understanding as to the importance of specific simulator parameters, which is of broad interest to the robotic machine learning community. We find that even optimised for different tasks that different physics engine perform better in certain scenarios and that friction and maximum actuator velocity are tightly bounded parameters that greatly impact the transference of simulated solutions.Comment: 8 Pages, Submitted to IROS202

    Sim-to-Real Transfer with Neural-Augmented Robot Simulation

    Get PDF
    International audienceDespite the recent successes of deep reinforcement learning, teaching complex motor skills to a physical robot remains a hard problem. While learning directly on a real system is usually impractical, doing so in simulation has proven to be fast and safe. Nevertheless, because of the "reality gap," policies trained in simulation often perform poorly when deployed on a real system. In this work, we introduce a method for training a recurrent neural network on the differences between simulated and real robot trajectories and then using this model to augment the simulator. This Neural-Augmented Simulation (NAS) can be used to learn control policies that transfer significantly better to real environments than policies learned on existing simulators. We demonstrate the potential of our approach through a set of experiments on the Mujoco simulator with added backlash and the Poppy Ergo Jr robot. NAS allows us to learn policies that are competitive with ones that would have been learned directly on the real robot
    corecore