2 research outputs found

    Cross-modal Variational Auto-encoder with Distributed Latent Spaces and Associators

    Full text link
    In this paper, we propose a novel structure for a cross-modal data association, which is inspired by the recent research on the associative learning structure of the brain. We formulate the cross-modal association in Bayesian inference framework realized by a deep neural network with multiple variational auto-encoders and variational associators. The variational associators transfer the latent spaces between auto-encoders that represent different modalities. The proposed structure successfully associates even heterogeneous modal data and easily incorporates the additional modality to the entire network via the proposed cross-modal associator. Furthermore, the proposed structure can be trained with only a small amount of paired data since auto-encoders can be trained by unsupervised manner. Through experiments, the effectiveness of the proposed structure is validated on various datasets including visual and auditory data.Comment: 10 pages, 6 figure

    M2P2: Multimodal Persuasion Prediction using Adaptive Fusion

    Full text link
    Identifying persuasive speakers in an adversarial environment is a critical task. In a national election, politicians would like to have persuasive speakers campaign on their behalf. When a company faces adverse publicity, they would like to engage persuasive advocates for their position in the presence of adversaries who are critical of them. Debates represent a common platform for these forms of adversarial persuasion. This paper solves two problems: the Debate Outcome Prediction (DOP) problem predicts who wins a debate while the Intensity of Persuasion Prediction (IPP) problem predicts the change in the number of votes before and after a speaker speaks. Though DOP has been previously studied, we are the first to study IPP. Past studies on DOP fail to leverage two important aspects of multimodal data: 1) multiple modalities are often semantically aligned, and 2) different modalities may provide diverse information for prediction. Our M2P2 (Multimodal Persuasion Prediction) framework is the first to use multimodal (acoustic, visual, language) data to solve the IPP problem. To leverage the alignment of different modalities while maintaining the diversity of the cues they provide, M2P2 devises a novel adaptive fusion learning framework which fuses embeddings obtained from two modules -- an alignment module that extracts shared information between modalities and a heterogeneity module that learns the weights of different modalities with guidance from three separately trained unimodal reference models. We test M2P2 on the popular IQ2US dataset designed for DOP. We also introduce a new dataset called QPS (from Qipashuo, a popular Chinese debate TV show ) for IPP. M2P2 significantly outperforms 4 recent baselines on both datasets.Comment: published in IEEE Trans. on Multimedia 202
    corecore