3,488 research outputs found

    Learning to Navigate Unseen Environments: Back Translation with Environmental Dropout

    Full text link
    A grand goal in AI is to build a robot that can accurately navigate based on natural language instructions, which requires the agent to perceive the scene, understand and ground language, and act in the real-world environment. One key challenge here is to learn to navigate in new environments that are unseen during training. Most of the existing approaches perform dramatically worse in unseen environments as compared to seen ones. In this paper, we present a generalizable navigational agent. Our agent is trained in two stages. The first stage is training via mixed imitation and reinforcement learning, combining the benefits from both off-policy and on-policy optimization. The second stage is fine-tuning via newly-introduced 'unseen' triplets (environment, path, instruction). To generate these unseen triplets, we propose a simple but effective 'environmental dropout' method to mimic unseen environments, which overcomes the problem of limited seen environment variability. Next, we apply semi-supervised learning (via back-translation) on these dropped-out environments to generate new paths and instructions. Empirically, we show that our agent is substantially better at generalizability when fine-tuned with these triplets, outperforming the state-of-art approaches by a large margin on the private unseen test set of the Room-to-Room task, and achieving the top rank on the leaderboard.Comment: NAACL 2019 (12 pages

    Emergent Communication in a Multi-Modal, Multi-Step Referential Game

    Full text link
    Inspired by previous work on emergent communication in referential games, we propose a novel multi-modal, multi-step referential game, where the sender and receiver have access to distinct modalities of an object, and their information exchange is bidirectional and of arbitrary duration. The multi-modal multi-step setting allows agents to develop an internal communication significantly closer to natural language, in that they share a single set of messages, and that the length of the conversation may vary according to the difficulty of the task. We examine these properties empirically using a dataset consisting of images and textual descriptions of mammals, where the agents are tasked with identifying the correct object. Our experiments indicate that a robust and efficient communication protocol emerges, where gradual information exchange informs better predictions and higher communication bandwidth improves generalization.Comment: Published as a conference paper at ICLR 2018. 12 page

    Game-Based Video-Context Dialogue

    Full text link
    Current dialogue systems focus more on textual and speech context knowledge and are usually based on two speakers. Some recent work has investigated static image-based dialogue. However, several real-world human interactions also involve dynamic visual context (similar to videos) as well as dialogue exchanges among multiple speakers. To move closer towards such multimodal conversational skills and visually-situated applications, we introduce a new video-context, many-speaker dialogue dataset based on live-broadcast soccer game videos and chats from Twitch.tv. This challenging testbed allows us to develop visually-grounded dialogue models that should generate relevant temporal and spatial event language from the live video, while also being relevant to the chat history. For strong baselines, we also present several discriminative and generative models, e.g., based on tridirectional attention flow (TriDAF). We evaluate these models via retrieval ranking-recall, automatic phrase-matching metrics, as well as human evaluation studies. We also present dataset analyses, model ablations, and visualizations to understand the contribution of different modalities and model components.Comment: EMNLP 2018 (14 pages) (fixed Table5 typo in v2

    When Autonomous Systems Meet Accuracy and Transferability through AI: A Survey

    Full text link
    With widespread applications of artificial intelligence (AI), the capabilities of the perception, understanding, decision-making and control for autonomous systems have improved significantly in the past years. When autonomous systems consider the performance of accuracy and transferability, several AI methods, like adversarial learning, reinforcement learning (RL) and meta-learning, show their powerful performance. Here, we review the learning-based approaches in autonomous systems from the perspectives of accuracy and transferability. Accuracy means that a well-trained model shows good results during the testing phase, in which the testing set shares a same task or a data distribution with the training set. Transferability means that when a well-trained model is transferred to other testing domains, the accuracy is still good. Firstly, we introduce some basic concepts of transfer learning and then present some preliminaries of adversarial learning, RL and meta-learning. Secondly, we focus on reviewing the accuracy or transferability or both of them to show the advantages of adversarial learning, like generative adversarial networks (GANs), in typical computer vision tasks in autonomous systems, including image style transfer, image superresolution, image deblurring/dehazing/rain removal, semantic segmentation, depth estimation, pedestrian detection and person re-identification (re-ID). Then, we further review the performance of RL and meta-learning from the aspects of accuracy or transferability or both of them in autonomous systems, involving pedestrian tracking, robot navigation and robotic manipulation. Finally, we discuss several challenges and future topics for using adversarial learning, RL and meta-learning in autonomous systems

    Span-based Localizing Network for Natural Language Video Localization

    Full text link
    Given an untrimmed video and a text query, natural language video localization (NLVL) is to locate a matching span from the video that semantically corresponds to the query. Existing solutions formulate NLVL either as a ranking task and apply multimodal matching architecture, or as a regression task to directly regress the target video span. In this work, we address NLVL task with a span-based QA approach by treating the input video as text passage. We propose a video span localizing network (VSLNet), on top of the standard span-based QA framework, to address NLVL. The proposed VSLNet tackles the differences between NLVL and span-based QA through a simple yet effective query-guided highlighting (QGH) strategy. The QGH guides VSLNet to search for matching video span within a highlighted region. Through extensive experiments on three benchmark datasets, we show that the proposed VSLNet outperforms the state-of-the-art methods; and adopting span-based QA framework is a promising direction to solve NLVL.Comment: To appear at ACL 202

    Multimodal Research in Vision and Language: A Review of Current and Emerging Trends

    Full text link
    Deep Learning and its applications have cascaded impactful research and development with a diverse range of modalities present in the real-world data. More recently, this has enhanced research interests in the intersection of the Vision and Language arena with its numerous applications and fast-paced growth. In this paper, we present a detailed overview of the latest trends in research pertaining to visual and language modalities. We look at its applications in their task formulations and how to solve various problems related to semantic perception and content generation. We also address task-specific trends, along with their evaluation strategies and upcoming challenges. Moreover, we shed some light on multi-disciplinary patterns and insights that have emerged in the recent past, directing this field towards more modular and transparent intelligent systems. This survey identifies key trends gravitating recent literature in VisLang research and attempts to unearth directions that the field is heading towards

    A Comprehensive Survey of Deep Learning for Image Captioning

    Full text link
    Generating a description of an image is called image captioning. Image captioning requires to recognize the important objects, their attributes and their relationships in an image. It also needs to generate syntactically and semantically correct sentences. Deep learning-based techniques are capable of handling the complexities and challenges of image captioning. In this survey paper, we aim to present a comprehensive review of existing deep learning-based image captioning techniques. We discuss the foundation of the techniques to analyze their performances, strengths and limitations. We also discuss the datasets and the evaluation metrics popularly used in deep learning based automatic image captioning.Comment: 36 Pages, Accepted as a Journal Paper in ACM Computing Surveys (October 2018

    Dual Ask-Answer Network for Machine Reading Comprehension

    Full text link
    There are three modalities in the reading comprehension setting: question, answer and context. The task of question answering or question generation aims to infer an answer or a question when given the counterpart based on context. We present a novel two-way neural sequence transduction model that connects three modalities, allowing it to learn two tasks simultaneously and mutually benefit one another. During training, the model receives question-context-answer triplets as input and captures the cross-modal interaction via a hierarchical attention process. Unlike previous joint learning paradigms that leverage the duality of question generation and question answering at data level, we solve such dual tasks at the architecture level by mirroring the network structure and partially sharing components at different layers. This enables the knowledge to be transferred from one task to another, helping the model to find a general representation for each modality. The evaluation on four public datasets shows that our dual-learning model outperforms the mono-learning counterpart as well as the state-of-the-art joint models on both question answering and question generation tasks.Comment: 8 pages, 5 figures, 4 tables. Code is available at https://github.com/hanxiao/daane

    From Standard Summarization to New Tasks and Beyond: Summarization with Manifold Information

    Full text link
    Text summarization is the research area aiming at creating a short and condensed version of the original document, which conveys the main idea of the document in a few words. This research topic has started to attract the attention of a large community of researchers, and it is nowadays counted as one of the most promising research areas. In general, text summarization algorithms aim at using a plain text document as input and then output a summary. However, in real-world applications, most of the data is not in a plain text format. Instead, there is much manifold information to be summarized, such as the summary for a web page based on a query in the search engine, extreme long document (e.g., academic paper), dialog history and so on. In this paper, we focus on the survey of these new summarization tasks and approaches in the real-world application.Comment: Accepted by IJCAI 2020 Survey Trac

    Deep Residual Output Layers for Neural Language Generation

    Full text link
    Many tasks, including language generation, benefit from learning the structure of the output space, particularly when the space of output labels is large and the data is sparse. State-of-the-art neural language models indirectly capture the output space structure in their classifier weights since they lack parameter sharing across output labels. Learning shared output label mappings helps, but existing methods have limited expressivity and are prone to overfitting. In this paper, we investigate the usefulness of more powerful shared mappings for output labels, and propose a deep residual output mapping with dropout between layers to better capture the structure of the output space and avoid overfitting. Evaluations on three language generation tasks show that our output label mapping can match or improve state-of-the-art recurrent and self-attention architectures, and suggest that the classifier does not necessarily need to be high-rank to better model natural language if it is better at capturing the structure of the output space.Comment: To appear in ICML 201
    • …
    corecore