4 research outputs found

    Structure-Level Knowledge Distillation For Multilingual Sequence Labeling

    Full text link
    Multilingual sequence labeling is a task of predicting label sequences using a single unified model for multiple languages. Compared with relying on multiple monolingual models, using a multilingual model has the benefit of a smaller model size, easier in online serving, and generalizability to low-resource languages. However, current multilingual models still underperform individual monolingual models significantly due to model capacity limitations. In this paper, we propose to reduce the gap between monolingual models and the unified multilingual model by distilling the structural knowledge of several monolingual models (teachers) to the unified multilingual model (student). We propose two novel KD methods based on structure-level information: (1) approximately minimizes the distance between the student's and the teachers' structure level probability distributions, (2) aggregates the structure-level knowledge to local distributions and minimizes the distance between two local probability distributions. Our experiments on 4 multilingual tasks with 25 datasets show that our approaches outperform several strong baselines and have stronger zero-shot generalizability than both the baseline model and teacher models.Comment: Accepted to ACL 2020, camera-ready. 14 page

    Sources of Transfer in Multilingual Named Entity Recognition

    Full text link
    Named-entities are inherently multilingual, and annotations in any given language may be limited. This motivates us to consider polyglot named-entity recognition (NER), where one model is trained using annotated data drawn from more than one language. However, a straightforward implementation of this simple idea does not always work in practice: naive training of NER models using annotated data drawn from multiple languages consistently underperforms models trained on monolingual data alone, despite having access to more training data. The starting point of this paper is a simple solution to this problem, in which polyglot models are fine-tuned on monolingual data to consistently and significantly outperform their monolingual counterparts. To explain this phenomena, we explore the sources of multilingual transfer in polyglot NER models and examine the weight structure of polyglot models compared to their monolingual counterparts. We find that polyglot models efficiently share many parameters across languages and that fine-tuning may utilize a large number of those parameters.Comment: ACL 202

    Coupling Distant Annotation and Adversarial Training for Cross-Domain Chinese Word Segmentation

    Full text link
    Fully supervised neural approaches have achieved significant progress in the task of Chinese word segmentation (CWS). Nevertheless, the performance of supervised models tends to drop dramatically when they are applied to out-of-domain data. Performance degradation is caused by the distribution gap across domains and the out of vocabulary (OOV) problem. In order to simultaneously alleviate these two issues, this paper proposes to couple distant annotation and adversarial training for cross-domain CWS. For distant annotation, we rethink the essence of "Chinese words" and design an automatic distant annotation mechanism that does not need any supervision or pre-defined dictionaries from the target domain. The approach could effectively explore domain-specific words and distantly annotate the raw texts for the target domain. For adversarial training, we develop a sentence-level training procedure to perform noise reduction and maximum utilization of the source domain information. Experiments on multiple real-world datasets across various domains show the superiority and robustness of our model, significantly outperforming previous state-of-the-art cross-domain CWS methods.Comment: Accepted by ACL 202

    Single-/Multi-Source Cross-Lingual NER via Teacher-Student Learning on Unlabeled Data in Target Language

    Full text link
    To better tackle the named entity recognition (NER) problem on languages with little/no labeled data, cross-lingual NER must effectively leverage knowledge learned from source languages with rich labeled data. Previous works on cross-lingual NER are mostly based on label projection with pairwise texts or direct model transfer. However, such methods either are not applicable if the labeled data in the source languages is unavailable, or do not leverage information contained in unlabeled data in the target language. In this paper, we propose a teacher-student learning method to address such limitations, where NER models in the source languages are used as teachers to train a student model on unlabeled data in the target language. The proposed method works for both single-source and multi-source cross-lingual NER. For the latter, we further propose a similarity measuring method to better weight the supervision from different teacher models. Extensive experiments for 3 target languages on benchmark datasets well demonstrate that our method outperforms existing state-of-the-art methods for both single-source and multi-source cross-lingual NER.Comment: This paper is accepted by ACL2020. Code is available at https://github.com/microsoft/vert-papers/tree/master/papers/SingleMulti-T
    corecore