5 research outputs found

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    Energy and computationally efficient resource allocation methods for cellular relay-aided networks with system stability consideration

    Get PDF
    The increasing demand for coverage extension and power gain, along with the need for decreasing implementation costs, raised the idea of relaying cellular systems. Developing relay stations as a coverage extension and low cost mechanism has also brought up the challenge of utilizing the available network resources cooperatively between base stations and relays. The topic of resource allocation in the downlink of a relaying cellular system is studied in the current dissertation with the objective of maximizing transmission rate, encompassing system stability and managing the interference as it has not been investigated as a comprehensive allocation problem in the previous literature. We begin our study by modeling a single cell downlink transmission system with the objective to enhance the throughput of cell-edge users by employing decode-and-forward relay stations. We study the queue length evolution at each hop and propose a rate control mechanism to stabilize the considered queues. Accordingly, we propose a novel allocation model which maximizes user throughput with respect to the channel condition and the stability requirements. To solve the proposed allocation problem, we introduced optimization algorithm as well as heuristic approaches which offer low computation complexity. Next, we enhance the initial allocation method by considering a multi-cell system that accounts for more general and practical cellular networks. The multi-cell model embodies extra constraints for controlling the interference to the users of neighboring cells. We propose a different set of stability constraints which do not enquire a priori knowledge of the statistics of the arriving traffic. In an approach to improve the energy efficiency while respecting the stability and interference criteria, we also suggest an energy-conservative allocation scheme. We solve the defined allocation problems in a central controlling system. As our final contribution, we enhance the proposed multi-cell allocation model with a low overhead and distributed approach. The proposed method is based on the idea of dividing the resource allocation task between each base station and its connected relay stations. In addition, the messaging overhead for controlling inter-cell interference is minimized using the reference-station method. This distributed approach offers high degree of energy efficiency as well as more scalability in comparison to centralized schemes, when the system consists of larger number of cells and users. Since the defined problems embody multiple variables and constraints, we develop a framework to cast the joint design in the optimization form which gives rise to nonlinear and nonconvex problems. In this regard, we employ time-sharing technique to tackle the combinatorial format of the allocation problem. In addition, it is important to consider the situation that the time-shared approach is not beneficial when subcarriers are not allowed to be shared during one time-slot. To overcome this obstacle, we apply heuristic algorithms as well as convex optimization techniques to obtain exclusive subcarrier allocation schemes. To evaluate the performance of the proposed solutions, we compare them in terms of the achieved throughput, transmitted power, queue stability, feedback overhead, and computation complexity. By the means of extensive simulation scenarios as well as numerical analysis, we demonstrate the remarkable advantages of the suggested approaches. The results of the present dissertation are appealing for designing of future HetNet systems specifically when the communication latency and the energy consumption are required to be minimized

    Interference control and radio spectrum allocation in shared spectrum access

    Get PDF
    With demands on the radio spectrum intensifying, it is necessary to use this scarce resource as efficiently as possible. One way forward is to apply flexible authorization schemes such as shared spectrum access. While such schemes are expected to make additional radio resource available and lower the spectrum access barriers, they also bring new challenges toward effectively dealing with the created extra interference which degrades the performance of networks, limiting the potential gains in a shared use of spectrum. In this thesis, to address the interference issue, different spectrum access schemes and deployment scenarios are investigated.  Firstly, we consider licensed shared access where database-assisted TV white space network architecture is employed to facilitate the controlled access of the secondary system to the TV band. The operation of the secondary system is allowed only if the quality of service experienced by the incumbent users is preserved. Furthermore, the secondary system should benefit itself from utilizing the TV band in licensed shared access mode. One challenge for efficient operation of the licensed secondary system is to control the cross-tier interference generated at the TV receiver, taking into account the self-interference in the secondary system.  Secondly, we consider co-primary shared access where multiple operators share a part of their spectrum. This can be done in two different operational levels, users and cells. The user level is done in the context of D2D communications where two users subscribed to different operators can transmit directly to each other. The cell level allows spectrum sharing between two small cells, e.g., indoor and outdoor small cells, in a dense urban environments. The main challenges for such scenarios are to manage the cross-tier interference generated by other users or cells subscribed to different operators, and to identify the amount of radio spectrum each operator contributes.  There are several approaches to reduce the risk of interference, but they often come at a high price in terms of complexity and signaling overhead. In this thesis, we aim to propose low complexity mechanisms that take interference control and radio spectrum allocation into account. The proposed mechanisms are based on tractable models which characterize the effects of the fundamental design parameters on the system behavior in shared spectrum access. The models are leveraged to capture the statistic of the aggregate interference and its effects on the performance metrics
    corecore