3 research outputs found

    Adversarially Approximated Autoencoder for Image Generation and Manipulation

    Full text link
    Regularized autoencoders learn the latent codes, a structure with the regularization under the distribution, which enables them the capability to infer the latent codes given observations and generate new samples given the codes. However, they are sometimes ambiguous as they tend to produce reconstructions that are not necessarily faithful reproduction of the inputs. The main reason is to enforce the learned latent code distribution to match a prior distribution while the true distribution remains unknown. To improve the reconstruction quality and learn the latent space a manifold structure, this work present a novel approach using the adversarially approximated autoencoder (AAAE) to investigate the latent codes with adversarial approximation. Instead of regularizing the latent codes by penalizing on the distance between the distributions of the model and the target, AAAE learns the autoencoder flexibly and approximates the latent space with a simpler generator. The ratio is estimated using generative adversarial network (GAN) to enforce the similarity of the distributions. Additionally, the image space is regularized with an additional adversarial regularizer. The proposed approach unifies two deep generative models for both latent space inference and diverse generation. The learning scheme is realized without regularization on the latent codes, which also encourages faithful reconstruction. Extensive validation experiments on four real-world datasets demonstrate the superior performance of AAAE. In comparison to the state-of-the-art approaches, AAAE generates samples with better quality and shares the properties of regularized autoencoder with a nice latent manifold structure

    Learning Discriminative Hashing Codes for Cross-Modal Retrieval based on Multi-view Features

    Full text link
    Hashing techniques have been applied broadly in retrieval tasks due to their low storage requirements and high speed of processing. Many hashing methods based on a single view have been extensively studied for information retrieval. However, the representation capacity of a single view is insufficient and some discriminative information is not captured, which results in limited improvement. In this paper, we employ multiple views to represent images and texts for enriching the feature information. Our framework exploits the complementary information among multiple views to better learn the discriminative compact hash codes. A discrete hashing learning framework that jointly performs classifier learning and subspace learning is proposed to complete multiple search tasks simultaneously. Our framework includes two stages, namely a kernelization process and a quantization process. Kernelization aims to find a common subspace where multi-view features can be fused. The quantization stage is designed to learn discriminative unified hashing codes. Extensive experiments are performed on single-label datasets (WiKi and MMED) and multi-label datasets (MIRFlickr and NUS-WIDE) and the experimental results indicate the superiority of our method compared with the state-of-the-art methods.Comment: 28 pages, 10 figures, 13 tables. The paper is under consideration at Pattern Analysis and Application

    Semantic Granularity Metric Learning for Visual Search

    Full text link
    Deep metric learning applied to various applications has shown promising results in identification, retrieval and recognition. Existing methods often do not consider different granularity in visual similarity. However, in many domain applications, images exhibit similarity at multiple granularities with visual semantic concepts, e.g. fashion demonstrates similarity ranging from clothing of the exact same instance to similar looks/design or a common category. Therefore, training image triplets/pairs used for metric learning inherently possess different degree of information. However, the existing methods often treats them with equal importance during training. This hinders capturing the underlying granularities in feature similarity required for effective visual search. In view of this, we propose a new deep semantic granularity metric learning (SGML) that develops a novel idea of leveraging attribute semantic space to capture different granularity of similarity, and then integrate this information into deep metric learning. The proposed method simultaneously learns image attributes and embeddings using multitask CNNs. The two tasks are not only jointly optimized but are further linked by the semantic granularity similarity mappings to leverage the correlations between the tasks. To this end, we propose a new soft-binomial deviance loss that effectively integrates the degree of information in training samples, which helps to capture visual similarity at multiple granularities. Compared to recent ensemble-based methods, our framework is conceptually elegant, computationally simple and provides better performance. We perform extensive experiments on benchmark metric learning datasets and demonstrate that our method outperforms recent state-of-the-art methods, e.g., 1-4.5\% improvement in Recall@1 over the previous state-of-the-arts [1],[2] on DeepFashion In-Shop dataset.Comment: 10 pages, 10 figure
    corecore