10 research outputs found

    Energy Efficient Delay Sensitive Optimization in SWIPT-MIMO

    Full text link
    In this paper, we consider joint antenna selection and optimal beamforming for energy efficient delay minimization. We assume multiple-input multi-output (MIMO) system with full duplex simultaneous wireless information and power transfer (FD-SWIPT) where each sensor is equipped with a power splitting (PS) system and can simultaneously receive both energy and information from the aggregator (AGG). We show that the antenna selection and beamforming power control policies are adaptive to the energy state information (ESI), the queue state information (QSI) and the channel state information (CSI). We develop an analytical framework for energy efficient delay-optimal control problem based on the theory of infinite horizon partially observable Markov decision process (POMDP). The infinite-horizon POMDP problem is transformed into an equivalent value Bellman program and solved by near-optimal point-based Heuristic Search Value Iteration (PB-HSVI) method under specific standard conditions. The proposed solution outcome is a set of sub-optimal antenna selection and beamforming control policies. Simulation results reveal an effective trade-off between the contradictory objectives (i.e. delay and power consumption) and show the enhancement in delay by using FD-SWIPT systems in comparison to Half Duplex (HD)-SWIPT systems

    Cooperative Full-Duplex Physical and MAC Layer Design in Asynchronous Cognitive Networks

    Get PDF
    In asynchronous cognitive networks (CNs), where there is no synchronization between primary users (PUs) and secondary users (SUs), spectrum sensing becomes a challenging task. By combining cooperative spectrum sensing and full-duplex (FD) communications in asynchronous CNs, this paper demonstrates improvements in terms of the average throughput of both PUs and SUs for particular transmission schemes. The average throughputs are derived for SUs and PUs under different FD schemes, levels of residual self-interference, and number of cooperative SUs. In particular, we consider two types of FD schemes, namely, FD transmit-sense-reception (FDr) and FD transmit-sense (FDs). FDr allows SUs to transmit and receive data simultaneously, whereas, in FDs, the SUs continuously sense the channel during the transmission time. This paper shows the respective trade-offs and obtains the optimal scheme based on cooperative FD spectrum sensing. In addition, SUs’ average throughput is analyzed under different primary channel utilization and multichannel sensing schemes. Finally, new FD MAC protocol design is proposed and analyzed for FD cooperative spectrum sensing. We found optimum parameters for our proposed MAC protocol to achieve higher average throughput in certain applications
    corecore