2,166 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Snapshots of the EYES project

    Get PDF
    The EYES project (IST-2001-34734) is a three years European research project on self-organizing and collaborative energy-efficient sensor networks. It addresses the convergence of distributed information processing, wireless communications, and mobile computing. The goal of the project is to develop the architecture and the technology which enables the creation of a new generation of sensors that can effectively network together so as to provide a flexible platform for the support of a large variety of mobile sensor network applications. This paper provides a broad overview of the EYES project and highlights some approaches and results of the architecture

    CACHING STRATEGIES IN MANET USING DSR AND AODV ROUTING PROTOCOLS

    Get PDF
    We address cooperative caching in wireless networks, where the nodes may be mobile and exchange information in a peer - to - peer fashion. We consider both cases of nodes with large and small - sized cach es. For large - sized caches, we devise a strategy where nodes, independent of each other, decide whether to cache some content and for how long. In the case of small - sized caches, we aim to design a content replacement strategy that allows nodes to successfully store newly received information while maintaining the good performance of the content distribution system. Under both conditions, each node takes decisions according to its perception of what nearby users may store in their caches and with the aim of differentiating its own cache content from the other nodes. The result is the creation of content diversity within the nodes neighborhood so that a requesting user likely finds the desired information ne arby. We simulate our caching algorithms in different ad hoc network scenarios and compare them with other caching schemes, showing that our solution succeeds in creating the desired content diversity, thus leading to a resource - efficient information access
    • …
    corecore