64,123 research outputs found

    Building Up Recommender Systems By Deep Learning For Cognitive Services

    Full text link
    Cognitive services provide artificial intelligence (AI) technology for application developers, who are not required to be experts on machine learning. Cognitive services are presented as an integrated service platform where end users bring abilities such as seeing, hearing, speaking, searching, user profiling, etc. to their own applications under development via simple API calls. As one of the above abilities, recommender systems serve as an indispensable building brick, especially when it comes to the information retrieval functionality in the cognitive service platform. This thesis focuses on the novel recommendation algorithms that are able to improve on recommendation quality measured by accuracy metrics, e.g., precision and recall, with advanced deep learning techniques. Recent deep learning-based recommendation models have been proved to have state-ofthe-art recommendation quality in a host of recommendation scenarios, such as rating prediction tasks, top-N ranking tasks, sequential recommendation, etc. Many of them only leverage the existing information acquired from users’ past behaviours to model them and make one or a set of predictions on the users’ next choice. Such information is normally sparse so that an accurate user behaviour model is often difficult to obtain even with deep learning. To overcome this issue, we invent various adversarial techniques and apply them to deep learning recommendation models in different scenarios. Some of these techniques involve generative models to address data sparsity and some improve user behaviour modelling by introducing an adversarial opponent in model training. We empirically show the effectiveness of our novel techniques and the enhancement achieved over existing models via thorough experiments and ablation studies on widely adopted recommendation datasets. The contributions in this thesis are as follows: 1. Propose the adversarial collaborative auto-encoder model for top-N recommendation; 2. Propose a novel deep domain adaptation cross-domain recommendation model for rating prediction tasks via transfer learning; 3. Propose a novel adversarial noise layer for convolutional neural networks and a convolutional generative adversarial model for top-N recommendation

    Transfer Learning via Contextual Invariants for One-to-Many Cross-Domain Recommendation

    Full text link
    The rapid proliferation of new users and items on the social web has aggravated the gray-sheep user/long-tail item challenge in recommender systems. Historically, cross-domain co-clustering methods have successfully leveraged shared users and items across dense and sparse domains to improve inference quality. However, they rely on shared rating data and cannot scale to multiple sparse target domains (i.e., the one-to-many transfer setting). This, combined with the increasing adoption of neural recommender architectures, motivates us to develop scalable neural layer-transfer approaches for cross-domain learning. Our key intuition is to guide neural collaborative filtering with domain-invariant components shared across the dense and sparse domains, improving the user and item representations learned in the sparse domains. We leverage contextual invariances across domains to develop these shared modules, and demonstrate that with user-item interaction context, we can learn-to-learn informative representation spaces even with sparse interaction data. We show the effectiveness and scalability of our approach on two public datasets and a massive transaction dataset from Visa, a global payments technology company (19% Item Recall, 3x faster vs. training separate models for each domain). Our approach is applicable to both implicit and explicit feedback settings.Comment: SIGIR 202

    LRMM: Learning to Recommend with Missing Modalities

    Full text link
    Multimodal learning has shown promising performance in content-based recommendation due to the auxiliary user and item information of multiple modalities such as text and images. However, the problem of incomplete and missing modality is rarely explored and most existing methods fail in learning a recommendation model with missing or corrupted modalities. In this paper, we propose LRMM, a novel framework that mitigates not only the problem of missing modalities but also more generally the cold-start problem of recommender systems. We propose modality dropout (m-drop) and a multimodal sequential autoencoder (m-auto) to learn multimodal representations for complementing and imputing missing modalities. Extensive experiments on real-world Amazon data show that LRMM achieves state-of-the-art performance on rating prediction tasks. More importantly, LRMM is more robust to previous methods in alleviating data-sparsity and the cold-start problem.Comment: 11 pages, EMNLP 201

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502
    • …
    corecore