11 research outputs found

    Transfer Learning for Content-Based Recommender Systems using Tree Matching

    Full text link
    In this paper we present a new approach to content-based transfer learning for solving the data sparsity problem in cases when the users' preferences in the target domain are either scarce or unavailable, but the necessary information on the preferences exists in another domain. We show that training a system to use such information across domains can produce better performance. Specifically, we represent users' behavior patterns based on topological graph structures. Each behavior pattern represents the behavior of a set of users, when the users' behavior is defined as the items they rated and the items' rating values. In the next step we find a correlation between behavior patterns in the source domain and behavior patterns in the target domain. This mapping is considered a bridge between the two domains. Based on the correlation and content-attributes of the items, we train a machine learning model to predict users' ratings in the target domain. When we compare our approach to the popularity approach and KNN-cross-domain on a real world dataset, the results show that on an average of 83% of the cases our approach outperforms both methods

    Cross-domain collaborative recommendation in a cold-start context: The impact of user profile size on the quality of recommendation

    Get PDF
    Most of the research studies on recommender systems are focused on single-domain recommendations. With the growth of multi-domain internet stores such as iTunes, Google Play, and Amazon.com, an opportunity to offer recommendations across different domains become more and more attractive. But there are few research studies on cross-domain recommender systems. In this paper, we study both the cold-start problem and the hypothesis that cross-domain recommendations provide more accuracy using a large volume of user data from a true multi-domain recommender service. Our results indicate that cross-domain collaborative filtering could significantly improve the quality of recommendation in cold start context and the auxiliary profile size plays an important role in it. © 2013 Springer-Verlag

    Accuracy in Rating and Recommending Item Features

    Get PDF
    This paper discusses accuracy in processing ratings of and recommendations for item features. Such processing facilitates featurebased user navigation in recommender system interfaces. Item features, often in the form of tags, categories or meta-data, are becoming important hypertext components of recommender interfaces. Recommending features would help unfamiliar users navigate in such environments. This work explores techniques for improving feature recommendation accuracy. Conversely, it also examines possibilities for processing user ratings of features to improve recommendation of both features and items. This work’s illustrative implementation is a web portal for a museum collection that lets users browse, rate and receive recommendations for both artworks and interrelated topics about them. Accuracy measurements compare proposed techniques for processing feature ratings and recommending features. Resulting techniques recommend features with relative accuracy. Analysis indicates that processing ratings of either features or items does not improve accuracy of recommending the other

    A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression

    Get PDF
    Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods

    A Survey on Cross-domain Recommendation: Taxonomies, Methods, and Future Directions

    Full text link
    Traditional recommendation systems are faced with two long-standing obstacles, namely, data sparsity and cold-start problems, which promote the emergence and development of Cross-Domain Recommendation (CDR). The core idea of CDR is to leverage information collected from other domains to alleviate the two problems in one domain. Over the last decade, many efforts have been engaged for cross-domain recommendation. Recently, with the development of deep learning and neural networks, a large number of methods have emerged. However, there is a limited number of systematic surveys on CDR, especially regarding the latest proposed methods as well as the recommendation scenarios and recommendation tasks they address. In this survey paper, we first proposed a two-level taxonomy of cross-domain recommendation which classifies different recommendation scenarios and recommendation tasks. We then introduce and summarize existing cross-domain recommendation approaches under different recommendation scenarios in a structured manner. We also organize datasets commonly used. We conclude this survey by providing several potential research directions about this field

    A semantic web service-based framework for generic personalization and user modeling

    Get PDF
    [no abstract
    corecore