1,387 research outputs found

    A Game Theoretic Software Test-bed for Cyber Security Analysis of Critical Infrastructure

    Get PDF
    National critical infrastructures are vital to the functioning of modern societies and economies. The dependence on these infrastructures is so succinct that their incapacitation or destruction has a debilitating and cascading effect on national security. Critical infrastructure sectors ranging from financial services to power and transportation to communications and health care, all depend on massive information communication technology networks. Cyberspace is composed of numerous interconnected computers, servers and databases that hold critical data and allow critical infrastructures to function. Securing critical data in a cyberspace that holds against growing and evolving cyber threats is an important focus area for most countries across the world. A novel approach is proposed to assess the vulnerabilities of own networks against adversarial attackers, where the adversary’s perception of strengths and vulnerabilities are modelled using game theoretic techniques. The proposed game theoretic framework models the uncertainties of information with the players (attackers and defenders) in terms of their information sets and their behaviour is modelled and assessed using a probability and belief function framework. The attack-defence scenarios are exercised on a virtual cyber warfare test-bed to assess and evaluate vulnerability of cyber systems. Optimal strategies for attack and defence are computed for the players which are validated using simulation experiments on the cyber war-games testbed, the results of which are used for security analyses

    Business and social evaluation of denial of service attacks in view of scaling economic counter-measures

    Get PDF
    This paper gives an analytical method to determine the economic and indirect implications of denial of service and distributed denial of service attacks. It is based on time preference dynamics applied to the monetary mass for the restoration of capabilities, on long term investments to rebuild capabilities, and of the usability level of the capabilities after an attack. A simple illustrative example is provided for a denial of service on a corporate data centre. The needed data collection methodologies are categorized by classes of targets. The use of the method is explained in the context of legal or policy driven dissuasive, retaliation or compensation/ restoration actions. A concrete set of deployment cases in the communications service and transport industries is discussed. The conclusion includes policy recommendations as well as information exchange requirements.Cyberwar; Denial of service; Business implications; Social implications; Mobile communications; Insurance

    Game Theory in Distributed Systems Security: Foundations, Challenges, and Future Directions

    Full text link
    Many of our critical infrastructure systems and personal computing systems have a distributed computing systems structure. The incentives to attack them have been growing rapidly as has their attack surface due to increasing levels of connectedness. Therefore, we feel it is time to bring in rigorous reasoning to secure such systems. The distributed system security and the game theory technical communities can come together to effectively address this challenge. In this article, we lay out the foundations from each that we can build upon to achieve our goals. Next, we describe a set of research challenges for the community, organized into three categories -- analytical, systems, and integration challenges, each with "short term" time horizon (2-3 years) and "long term" (5-10 years) items. This article was conceived of through a community discussion at the 2022 NSF SaTC PI meeting.Comment: 11 pages in IEEE Computer Society magazine format, including references and author bios. There is 1 figur

    Locating and Protecting Facilities Subject to Random Disruptions and Attacks

    Get PDF
    Recent events such as the 2011 Tohoku earthquake and tsunami in Japan have revealed the vulnerability of networks such as supply chains to disruptive events. In particular, it has become apparent that the failure of a few elements of an infrastructure system can cause a system-wide disruption. Thus, it is important to learn more about which elements of infrastructure systems are most critical and how to protect an infrastructure system from the effects of a disruption. This dissertation seeks to enhance the understanding of how to design and protect networked infrastructure systems from disruptions by developing new mathematical models and solution techniques and using them to help decision-makers by discovering new decision-making insights. Several gaps exist in the body of knowledge concerning how to design and protect networks that are subject to disruptions. First, there is a lack of insights on how to make equitable decisions related to designing networks subject to disruptions. This is important in public-sector decision-making where it is important to generate solutions that are equitable across multiple stakeholders. Second, there is a lack of models that integrate system design and system protection decisions. These models are needed so that we can understand the benefit of integrating design and protection decisions. Finally, most of the literature makes several key assumptions: 1) protection of infrastructure elements is perfect, 2) an element is either fully protected or fully unprotected, and 3) after a disruption facilities are either completely operational or completely failed. While these may be reasonable assumptions in some contexts, there may exist contexts in which these assumptions are limiting. There are several difficulties with filling these gaps in the literature. This dissertation describes the discovery of mathematical formulations needed to fill these gaps as well as the identification of appropriate solution strategies

    TESTING DECEPTION WITH A COMMERCIAL TOOL SIMULATING CYBERSPACE

    Get PDF
    Deception methods have been applied to the traditional domains of war (air, land, sea, and space). In the newest domain of cyber, deception can be studied to see how it can be best used. Cyberspace operations are an essential warfighting domain within the Department of Defense (DOD). Many training exercises and courses have been developed to aid leadership with planning and to execute cyberspace effects that support operations. However, only a few simulations train cyber operators about how to respond to cyberspace threats. This work tested a commercial product from Soar Technologies (Soar Tech) that simulates conflict in cyberspace. The Cyberspace Course of Action Tool (CCAT) is a decision-support tool that evaluates defensive deception in a wargame simulating a local-area network being attacked. Results showed that defensive deception methods of decoys and bait could be effective in cyberspace. This could help military cyber defenses since their digital infrastructure is threatened daily with cyberattacks.Marine Forces Cyberspace CommandChief Petty Officer, United States NavyChief Petty Officer, United States NavyApproved for public release. Distribution is unlimited

    Risk-Based Performance Metrics for Critical Infrastructure Protection? A Framework for Research and Analysis

    Get PDF
    Measuring things that do not occur, such as “deterred” or “prevented” terrorist attacks, can be difficult. Efforts to establish meaningful risk-based performance metrics and performance evaluation frameworks based on such metrics, for government agencies with counterterrorism missions, are arguably in a nascent state. However, by studying program theory, logic models, and performance evaluation theory, as well as studying how risk, deterrence, and resilience concepts may be leveraged to support antiterrorism efforts, one may propose a framework for a logic model or other performance evaluation approach. Such a framework may integrate these concepts to help proxy performance measurement for agencies with prevention and/or deterrence missions. This effort would not be without challenges
    • …
    corecore