3 research outputs found

    Where Graph Topology Matters: The Robust Subgraph Problem

    Full text link
    Robustness is a critical measure of the resilience of large networked systems, such as transportation and communication networks. Most prior works focus on the global robustness of a given graph at large, e.g., by measuring its overall vulnerability to external attacks or random failures. In this paper, we turn attention to local robustness and pose a novel problem in the lines of subgraph mining: given a large graph, how can we find its most robust local subgraph (RLS)? We define a robust subgraph as a subset of nodes with high communicability among them, and formulate the RLS-PROBLEM of finding a subgraph of given size with maximum robustness in the host graph. Our formulation is related to the recently proposed general framework for the densest subgraph problem, however differs from it substantially in that besides the number of edges in the subgraph, robustness also concerns with the placement of edges, i.e., the subgraph topology. We show that the RLS-PROBLEM is NP-hard and propose two heuristic algorithms based on top-down and bottom-up search strategies. Further, we present modifications of our algorithms to handle three practical variants of the RLS-PROBLEM. Experiments on synthetic and real-world graphs demonstrate that we find subgraphs with larger robustness than the densest subgraphs even at lower densities, suggesting that the existing approaches are not suitable for the new problem setting.Comment: 13 pages, 10 Figures, 3 Tables, to appear at SDM 2015 (9 pages only

    Critical Links Detection to Maintain Small Diameter Against Link Failures

    No full text

    A Survey on Investigating the Need for Intelligent Power-Aware Load Balanced Routing Protocols for Handling Critical Links in MANETs

    Get PDF
    In mobile ad hoc networks connectivity is always an issue of concern. Due to dynamism in the behavior of mobile nodes, efficiency shall be achieved only with the assumption of good network infrastructure. Presence of critical links results in deterioration which should be detected in advance to retain the prevailing communication setup. This paper discusses a short survey on the specialized algorithms and protocols related to energy efficient load balancing for critical link detection in the recent literature. This paper also suggests a machine learning based hybrid power-aware approach for handling critical nodes via load balancing
    corecore