21,175 research outputs found

    A hypothesize-and-verify framework for Text Recognition using Deep Recurrent Neural Networks

    Full text link
    Deep LSTM is an ideal candidate for text recognition. However text recognition involves some initial image processing steps like segmentation of lines and words which can induce error to the recognition system. Without segmentation, learning very long range context is difficult and becomes computationally intractable. Therefore, alternative soft decisions are needed at the pre-processing level. This paper proposes a hybrid text recognizer using a deep recurrent neural network with multiple layers of abstraction and long range context along with a language model to verify the performance of the deep neural network. In this paper we construct a multi-hypotheses tree architecture with candidate segments of line sequences from different segmentation algorithms at its different branches. The deep neural network is trained on perfectly segmented data and tests each of the candidate segments, generating unicode sequences. In the verification step, these unicode sequences are validated using a sub-string match with the language model and best first search is used to find the best possible combination of alternative hypothesis from the tree structure. Thus the verification framework using language models eliminates wrong segmentation outputs and filters recognition errors

    Learning Representations from Persian Handwriting for Offline Signature Verification, a Deep Transfer Learning Approach

    Full text link
    Offline Signature Verification (OSV) is a challenging pattern recognition task, especially when it is expected to generalize well on the skilled forgeries that are not available during the training. Its challenges also include small training sample and large intra-class variations. Considering the limitations, we suggest a novel transfer learning approach from Persian handwriting domain to multi-language OSV domain. We train two Residual CNNs on the source domain separately based on two different tasks of word classification and writer identification. Since identifying a person signature resembles identifying ones handwriting, it seems perfectly convenient to use handwriting for the feature learning phase. The learned representation on the more varied and plentiful handwriting dataset can compensate for the lack of training data in the original task, i.e. OSV, without sacrificing the generalizability. Our proposed OSV system includes two steps: learning representation and verification of the input signature. For the first step, the signature images are fed into the trained Residual CNNs. The output representations are then used to train SVMs for the verification. We test our OSV system on three different signature datasets, including MCYT (a Spanish signature dataset), UTSig (a Persian one) and GPDS-Synthetic (an artificial dataset). On UT-SIG, we achieved 9.80% Equal Error Rate (EER) which showed substantial improvement over the best EER in the literature, 17.45%. Our proposed method surpassed state-of-the-arts by 6% on GPDS-Synthetic, achieving 6.81%. On MCYT, EER of 3.98% was obtained which is comparable to the best previously reported results

    Beyond writing: The development of literacy in the Ancient Near East

    Get PDF
    Previous discussions of the origins of writing in the Ancient Near East have not incorporated the neuroscience of literacy, which suggests that when southern Mesopotamians wrote marks on clay in the late-fourth millennium, they inadvertently reorganized their neural activity, a factor in manipulating the writing system to reflect language, yielding literacy through a combination of neurofunctional change and increased script fidelity to language. Such a development appears to take place only with a sufficient demand for writing and reading, such as that posed by a state-level bureaucracy; the use of a material with suitable characteristics; and the production of marks that are conventionalized, handwritten, simple, and non-numerical. From the perspective of Material Engagement Theory, writing and reading represent the interactivity of bodies, materiality, and brains: movements of hands, arms, and eyes; clay and the implements used to mark it and form characters; and vision, motor planning, object recognition, and language. Literacy is a cognitive change that emerges from and depends upon the nexus of interactivity of the components

    Image-based Text Classification using 2D Convolutional Neural Networks

    Get PDF
    We propose a new approach to text classification in which we consider the input text as an image and apply 2D Convolutional Neural Networks to learn the local and global semantics of the sentences from the variations of the visual patterns of words. Our approach demonstrates that it is possible to get semantically meaningful features from images with text without using optical character recognition and sequential processing pipelines, techniques that traditional natural language processing algorithms require. To validate our approach, we present results for two applications: text classification and dialog modeling. Using a 2D Convolutional Neural Network, we were able to outperform the state-ofart accuracy results for a Chinese text classification task and achieved promising results for seven English text classification tasks. Furthermore, our approach outperformed the memory networks without match types when using out of vocabulary entities from Task 4 of the bAbI dialog dataset
    corecore