173 research outputs found

    The Next Generation of the Montage Image Mosaic Toolkit

    Get PDF
    The scientific computing landscape has evolved dramatically in the past few years, with new schemes for organizing and storing data that reflect the growth in size and complexity of astronomical data sets. In response to this changing landscape, we are, over the next two years, deploying the next generation of the Montage toolkit ([ascl:1010.036]). The first release (October 2015) supports multi-dimensional data sets ("data cubes"), and insertion of XMP/AVM tags that allows images to "drop-in" to the WWT. The same release offers a beta-version of web-based interactive visualization of images; this includes wrappers for visualization in Python. Subsequent releases will support HEALPix (now standard in cosmic background experiments); incorporation of Montage into package managers (which enable automated management of software builds), and support for a library that will enable Montage to be called directly from Python. This next generation toolkit will inherit the architectural benefits of the current engine - component based tools, ANSI-C portability across Unix platforms and scalability for distributed processing. With the expanded functionality under development, Montage can be viewed not simply as a mosaic engine, but as a scalable, portable toolkit for managing, organizing and processing images

    The Next Generation of the Montage Image Mosaic Toolkit

    Get PDF
    The scientific computing landscape has evolved dramatically in the past few years, with new schemes for organizing and storing data that reflect the growth in size and complexity of astronomical data sets. In response to this changing landscape, we are, over the next two years, deploying the next generation of the Montage toolkit ([ascl:1010.036]). The first release (October 2015) supports multi-dimensional data sets ("data cubes"), and insertion of XMP/AVM tags that allows images to "drop-in" to the WWT. The same release offers a beta-version of web-based interactive visualization of images; this includes wrappers for visualization in Python. Subsequent releases will support HEALPix (now standard in cosmic background experiments); incorporation of Montage into package managers (which enable automated management of software builds), and support for a library that will enable Montage to be called directly from Python. This next generation toolkit will inherit the architectural benefits of the current engine - component based tools, ANSI-C portability across Unix platforms and scalability for distributed processing. With the expanded functionality under development, Montage can be viewed not simply as a mosaic engine, but as a scalable, portable toolkit for managing, organizing and processing images

    The Einstein@Home search for radio pulsars and PSR J2007+2722 discovery

    Get PDF
    Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 193 countries, to search for new neutron stars using data from electromagnetic and gravitational-wave detectors. This paper presents a detailed description of the search for new radio pulsars using Pulsar ALFA survey data from the Arecibo Observatory. The enormous computing power allows this search to cover a new region of parameter space; it can detect pulsars in binary systems with orbital periods as short as 11 minutes. We also describe the first Einstein@Home discovery, the 40.8 Hz isolated pulsar PSR J2007+2722, and provide a full timing model. PSR J2007+2722\u27s pulse profile is remarkably wide with emission over almost the entire spin period. This neutron star is most likely a disrupted recycled pulsar, about as old as its characteristic spin-down age of 404 Myr. However, there is a small chance that it was born recently, with a low magnetic field. If so, upper limits on the X-ray flux suggest but cannot prove that PSR J2007+2722 is at least ∼100 kyr old. In the future, we expect that the massive computing power provided by volunteers should enable many additional radio pulsar discoveries. © 2013. The American Astronomical Society. All rights reserved

    dispel4py: A Python framework for data-intensive scientific computing

    Get PDF
    This paper presents dispel4py, a new Python framework for describing abstract stream-based workflows for distributed data-intensive applications. These combine the familiarity of Python programming with the scalability of workflows. Data streaming is used to gain performance, rapid prototyping and applicability to live observations. dispel4py enables scientists to focus on their scientific goals, avoiding distracting details and retaining flexibility over the computing infrastructure they use. The implementation, therefore, has to map dispel4py abstract workflows optimally onto target platforms chosen dynamically. We present four dispel4py mappings: Apache Storm, message-passing interface (MPI), multi-threading and sequential, showing two major benefits: a) smooth transitions from local development on a laptop to scalable execution for production work, and b) scalable enactment on significantly different distributed computing infrastructures. Three application domains are reported and measurements on multiple infrastructures show the optimisations achieved; they have provided demanding real applications and helped us develop effective training. The dispel4py.org is an open-source project to which we invite participation. The effective mapping of dispel4py onto multiple target infrastructures demonstrates exploitation of data-intensive and high-performance computing (HPC) architectures and consistent scalability.</p

    An Analysis of the Competitive Advantage of the United States of America in Commercial Human Orbital Spaceflight Markets

    Get PDF
    The “Public/Private Human Access to Space” / Human Orbital Markets (HOM) study group of the International Academy of Astronautics (IAA) has established a framework for the identification and analysis of relevant factors and structures that support a global human orbital spaceflight market. The HOM study group has called for analysis at the national level to be incorporated in their global study. This report, commissioned by the FAA Office of Commercial Space Transport, provides a review of demonstrated and potential Human Orbital Markets and an analysis of the U.S. industrial supply chain supporting commercial human orbital spaceflight. We utilize a multi‐method, holistic approach incorporating primarily qualitative methodologies that also incorporates relevant statistical data. Our methodology parallels the National Competitive Advantage diamond model pioneered by economist Michael Porter. The study reveals that while the U.S. currently possesses significant competitive advantage in commercial human orbital spaceflight, there are several areas of note that present a challenge to the sustainability of this advantage

    The Einstein@Home Search for Radio Pulsars and PSR J2007+2722

    Get PDF
    Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 193 countries, to search for new neutron stars using data from electromagnetic and gravitational-wave detectors. This paper presents a detailed description of the search for new radio pulsars using Pulsar ALFA survey data from the Arecibo Observatory. The enormous computing power allows this search to cover a new region of parameter space; it can detect pulsars in binary systems with orbital periods as short as 11 minutes. We also describe the first Einstein@Home discovery, the 40.8 Hz isolated pulsar PSR J2007+2722, and provide a full timing model. PSR J2007+2722\u27s pulse profile is remarkably wide with emission over almost the entire spin period. This neutron star is most likely a disrupted recycled pulsar, about as old as its characteristic spin-down age of 404 Myr. However, there is a small chance that it was born recently, with a low magnetic field. If so, upper limits on the X-ray flux suggest but cannot prove that PSR J2007+2722 is at least ~100 kyr old. In the future, we expect that the massive computing power provided by volunteers should enable many additional radio pulsar discoveries
    corecore