3 research outputs found

    Application of Definability to Query Answering over Knowledge Bases

    Get PDF
    Answering object queries (i.e. instance retrieval) is a central task in ontology based data access (OBDA). Performing this task involves reasoning with respect to a knowledge base K (i.e. ontology) over some description logic (DL) dialect L. As the expressive power of L grows, so does the complexity of reasoning with respect to K. Therefore, eliminating the need to reason with respect to a knowledge base K is desirable. In this work, we propose an optimization to improve performance of answering object queries by eliminating the need to reason with respect to the knowledge base and, instead, utilizing cached query results when possible. In particular given a DL dialect L, an object query C over some knowledge base K and a set of cached query results S={S1, ..., Sn} obtained from evaluating past queries, we rewrite C into an equivalent query D, that can be evaluated with respect to an empty knowledge base, using cached query results S' = {Si1, ..., Sim}, where S' is a subset of S. The new query D is an interpolant for the original query C with respect to K and S. To find D, we leverage a tool for enumerating interpolants of a given sentence with respect to some theory. We describe a procedure that maps a knowledge base K, expressed in terms of a description logic dialect of first order logic, and object query C into an equivalent theory and query that are input into the interpolant enumerating tool, and resulting interpolants into an object query D that can be evaluated over an empty knowledge base. We show the efficacy of our approach through experimental evaluation on a Lehigh University Benchmark (LUBM) data set, as well as on a synthetic data set, LUBMMOD, that we created by augmenting an LUBM ontology with additional axioms

    Craig Interpolation in Displayable Logics

    Get PDF
    Abstract. We give a general proof-theoretic method for establishing Craig interpolation for displayable logics, based upon an analysis of the individual proof rules of their display calculi. Using this uniform method, we establish interpolation for a spectrum of display calculi differing in their structural rules, including those for multiplicative linear logic, multiplicative additive linear logic and ordinary classical logic. Our analysis at the level of proof rules also provides new insights into the reasons why interpolation fails, or seems likely to fail, in many substructural logics. Specifically, we identify contraction as being particularly problematic for interpolation except in special circumstances.

    Craig Interpolation in Displayable Logics

    No full text
    We give a general proof-theoretic method for proving Craig interpolation for displayable logics, based on an analysis of the individual proof rules of their display calculi. Using this uniform method, we prove interpolation for a spectrum of display calculi differing in their structural rules, including those for multiplicative linear logic, multiplicative additive linear logic and ordinary classical logic. Our analysis of proof rules also provides new insights into why interpolation fails, or seems likely to fail, in many substructural logics. Specifically, contraction appears particularly problematic for interpolation except in special circumstances
    corecore