16,185 research outputs found

    Hidden and Uncontrolled - On the Emergence of Network Steganographic Threats

    Full text link
    Network steganography is the art of hiding secret information within innocent network transmissions. Recent findings indicate that novel malware is increasingly using network steganography. Similarly, other malicious activities can profit from network steganography, such as data leakage or the exchange of pedophile data. This paper provides an introduction to network steganography and highlights its potential application for harmful purposes. We discuss the issues related to countering network steganography in practice and provide an outlook on further research directions and problems.Comment: 11 page

    A Taxonomy for Attack Patterns on Information Flows in Component-Based Operating Systems

    Full text link
    We present a taxonomy and an algebra for attack patterns on component-based operating systems. In a multilevel security scenario, where isolation of partitions containing data at different security classifications is the primary security goal and security breaches are mainly defined as undesired disclosure or modification of classified data, strict control of information flows is the ultimate goal. In order to prevent undesired information flows, we provide a classification of information flow types in a component-based operating system and, by this, possible patterns to attack the system. The systematic consideration of informations flows reveals a specific type of operating system covert channel, the covert physical channel, which connects two former isolated partitions by emitting physical signals into the computer's environment and receiving them at another interface.Comment: 9 page

    Time Protection: the Missing OS Abstraction

    Get PDF
    Timing channels enable data leakage that threatens the security of computer systems, from cloud platforms to smartphones and browsers executing untrusted third-party code. Preventing unauthorised information flow is a core duty of the operating system, however, present OSes are unable to prevent timing channels. We argue that OSes must provide time protection in addition to the established memory protection. We examine the requirements of time protection, present a design and its implementation in the seL4 microkernel, and evaluate its efficacy as well as performance overhead on Arm and x86 processors
    • …
    corecore