22,411 research outputs found

    Characteristic of partition-circuit matroid through approximation number

    Full text link
    Rough set theory is a useful tool to deal with uncertain, granular and incomplete knowledge in information systems. And it is based on equivalence relations or partitions. Matroid theory is a structure that generalizes linear independence in vector spaces, and has a variety of applications in many fields. In this paper, we propose a new type of matroids, namely, partition-circuit matroids, which are induced by partitions. Firstly, a partition satisfies circuit axioms in matroid theory, then it can induce a matroid which is called a partition-circuit matroid. A partition and an equivalence relation on the same universe are one-to-one corresponding, then some characteristics of partition-circuit matroids are studied through rough sets. Secondly, similar to the upper approximation number which is proposed by Wang and Zhu, we define the lower approximation number. Some characteristics of partition-circuit matroids and the dual matroids of them are investigated through the lower approximation number and the upper approximation number.Comment: 12 page

    Knowledge Engineering from Data Perspective: Granular Computing Approach

    Get PDF
    The concept of rough set theory is a mathematical approach to uncertainly and vagueness in data analysis, introduced by Zdzislaw Pawlak in 1980s. Rough set theory assumes the underlying structure of knowledge is a partition. We have extended Pawlak’s concept of knowledge to coverings. We have taken a soft approach regarding any generalized subset as a basic knowledge. We regard a covering as basic knowledge from which the theory of knowledge approximations and learning, knowledge dependency and reduct are developed

    Parametric matroid of rough set

    Full text link
    Rough set is mainly concerned with the approximations of objects through an equivalence relation on a universe. Matroid is a combinatorial generalization of linear independence in vector spaces. In this paper, we define a parametric set family, with any subset of a universe as its parameter, to connect rough sets and matroids. On the one hand, for a universe and an equivalence relation on the universe, a parametric set family is defined through the lower approximation operator. This parametric set family is proved to satisfy the independent set axiom of matroids, therefore it can generate a matroid, called a parametric matroid of the rough set. Three equivalent representations of the parametric set family are obtained. Moreover, the parametric matroid of the rough set is proved to be the direct sum of a partition-circuit matroid and a free matroid. On the other hand, since partition-circuit matroids were well studied through the lower approximation number, we use it to investigate the parametric matroid of the rough set. Several characteristics of the parametric matroid of the rough set, such as independent sets, bases, circuits, the rank function and the closure operator, are expressed by the lower approximation number.Comment: 15 page

    Covering matroid

    Full text link
    In this paper, we propose a new type of matroids, namely covering matroids, and investigate the connections with the second type of covering-based rough sets and some existing special matroids. Firstly, as an extension of partitions, coverings are more natural combinatorial objects and can sometimes be more efficient to deal with problems in the real world. Through extending partitions to coverings, we propose a new type of matroids called covering matroids and prove them to be an extension of partition matroids. Secondly, since some researchers have successfully applied partition matroids to classical rough sets, we study the relationships between covering matroids and covering-based rough sets which are an extension of classical rough sets. Thirdly, in matroid theory, there are many special matroids, such as transversal matroids, partition matroids, 2-circuit matroid and partition-circuit matroids. The relationships among several special matroids and covering matroids are studied.Comment: 15 page

    Some characteristics of matroids through rough sets

    Full text link
    At present, practical application and theoretical discussion of rough sets are two hot problems in computer science. The core concepts of rough set theory are upper and lower approximation operators based on equivalence relations. Matroid, as a branch of mathematics, is a structure that generalizes linear independence in vector spaces. Further, matroid theory borrows extensively from the terminology of linear algebra and graph theory. We can combine rough set theory with matroid theory through using rough sets to study some characteristics of matroids. In this paper, we apply rough sets to matroids through defining a family of sets which are constructed from the upper approximation operator with respect to an equivalence relation. First, we prove the family of sets satisfies the support set axioms of matroids, and then we obtain a matroid. We say the matroids induced by the equivalence relation and a type of matroid, namely support matroid, is induced. Second, through rough sets, some characteristics of matroids such as independent sets, support sets, bases, hyperplanes and closed sets are investigated.Comment: 13 page

    Approximations from Anywhere and General Rough Sets

    Full text link
    Not all approximations arise from information systems. The problem of fitting approximations, subjected to some rules (and related data), to information systems in a rough scheme of things is known as the \emph{inverse problem}. The inverse problem is more general than the duality (or abstract representation) problems and was introduced by the present author in her earlier papers. From the practical perspective, a few (as opposed to one) theoretical frameworks may be suitable for formulating the problem itself. \emph{Granular operator spaces} have been recently introduced and investigated by the present author in her recent work in the context of antichain based and dialectical semantics for general rough sets. The nature of the inverse problem is examined from number-theoretic and combinatorial perspectives in a higher order variant of granular operator spaces and some necessary conditions are proved. The results and the novel approach would be useful in a number of unsupervised and semi supervised learning contexts and algorithms.Comment: 20 Pages. Scheduled to appear in IJCRS'2017 LNCS Proceedings, Springe
    corecore