2,330 research outputs found

    Coverage and Connectivity Analysis of Millimeter Wave Vehicular Networks

    Full text link
    The next generations of vehicles will require data transmission rates in the order of terabytes per driving hour, to support advanced automotive services. This unprecedented amount of data to be exchanged goes beyond the capabilities of existing communication technologies for vehicular communication and calls for new solutions. A possible answer to this growing demand for ultra-high transmission speeds can be found in the millimeter-wave (mmWave) bands which, however, are subject to high signal attenuation and challenging propagation characteristics. In particular, mmWave links are typically directional, to benefit from the resulting beamforming gain, and require precise alignment of the transmitter and the receiver beams, an operation which may increase the latency of the communication and lead to deafness due to beam misalignment. In this paper, we propose a stochastic model for characterizing the beam coverage and connectivity probability in mmWave automotive networks. The purpose is to exemplify some of the complex and interesting tradeoffs that have to be considered when designing solutions for vehicular scenarios based on mmWave links. The results show that the performance of the automotive nodes in highly mobile mmWave systems strictly depends on the specific environment in which the vehicles are deployed, and must account for several automotive-specific features such as the nodes speed, the beam alignment periodicity, the base stations density and the antenna geometry.Comment: In press of Elsevier Ad Hoc Network

    High-Speed Data Dissemination over Device-to-Device Millimeter-Wave Networks for Highway Vehicular Communication

    Get PDF
    Gigabit-per-second connectivity among vehicles is expected to be a key enabling technology for sensor information sharing, in turn, resulting in safer Intelligent Transportation Systems (ITSs). Recently proposed millimeter-wave (mmWave) systems appear to be the only solution capable of meeting the data rate demand imposed by future ITS services. In this poster, we assess the performance of a mmWave device-to-device (D2D) vehicular network by investigating the impact of system and communication parameters on end-users.Comment: To appear in IEEE VNC 2017, Torino, I

    An Efficient Uplink Multi-Connectivity Scheme for 5G mmWave Control Plane Applications

    Full text link
    The millimeter wave (mmWave) frequencies offer the potential of orders of magnitude increases in capacity for next-generation cellular systems. However, links in mmWave networks are susceptible to blockage and may suffer from rapid variations in quality. Connectivity to multiple cells - at mmWave and/or traditional frequencies - is considered essential for robust communication. One of the challenges in supporting multi-connectivity in mmWaves is the requirement for the network to track the direction of each link in addition to its power and timing. To address this challenge, we implement a novel uplink measurement system that, with the joint help of a local coordinator operating in the legacy band, guarantees continuous monitoring of the channel propagation conditions and allows for the design of efficient control plane applications, including handover, beam tracking and initial access. We show that an uplink-based multi-connectivity approach enables less consuming, better performing, faster and more stable cell selection and scheduling decisions with respect to a traditional downlink-based standalone scheme. Moreover, we argue that the presented framework guarantees (i) efficient tracking of the user in the presence of the channel dynamics expected at mmWaves, and (ii) fast reaction to situations in which the primary propagation path is blocked or not available.Comment: Submitted for publication in IEEE Transactions on Wireless Communications (TWC

    Modeling and Design of Millimeter-Wave Networks for Highway Vehicular Communication

    Get PDF
    Connected and autonomous vehicles will play a pivotal role in future Intelligent Transportation Systems (ITSs) and smart cities, in general. High-speed and low-latency wireless communication links will allow municipalities to warn vehicles against safety hazards, as well as support cloud-driving solutions to drastically reduce traffic jams and air pollution. To achieve these goals, vehicles need to be equipped with a wide range of sensors generating and exchanging high rate data streams. Recently, millimeter wave (mmWave) techniques have been introduced as a means of fulfilling such high data rate requirements. In this paper, we model a highway communication network and characterize its fundamental link budget metrics. In particular, we specifically consider a network where vehicles are served by mmWave Base Stations (BSs) deployed alongside the road. To evaluate our highway network, we develop a new theoretical model that accounts for a typical scenario where heavy vehicles (such as buses and lorries) in slow lanes obstruct Line-of-Sight (LOS) paths of vehicles in fast lanes and, hence, act as blockages. Using tools from stochastic geometry, we derive approximations for the Signal-to-Interference-plus-Noise Ratio (SINR) outage probability, as well as the probability that a user achieves a target communication rate (rate coverage probability). Our analysis provides new design insights for mmWave highway communication networks. In considered highway scenarios, we show that reducing the horizontal beamwidth from 90∘90^\circ to 30∘30^\circ determines a minimal reduction in the SINR outage probability (namely, 4⋅10−24 \cdot 10^{-2} at maximum). Also, unlike bi-dimensional mmWave cellular networks, for small BS densities (namely, one BS every 500500 m) it is still possible to achieve an SINR outage probability smaller than 0.20.2.Comment: Accepted for publication in IEEE Transactions on Vehicular Technology -- Connected Vehicles Serie
    • …
    corecore