875 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Analysis of the Decoupled Access for Downlink and Uplink in Wireless Heterogeneous Networks

    Get PDF
    Wireless cellular networks evolve towards a heterogeneous infrastructure, featuring multiple types of Base Stations (BSs), such as Femto BSs (FBSs) and Macro BSs (MBSs). A wireless device observes multiple points (BSs) through which it can access the infrastructure and it may choose to receive the downlink (DL) traffic from one BS and send uplink (UL) traffic through another BS. Such a situation is referred to as decoupled DL/UL access. Using the framework of stochastic geometry, we derive the association probability for DL/UL. In order to maximize the average received power, as the relative density of FBSs initially increases, a large fraction of devices chooses decoupled access, i.e. receive from a MBS in DL and transmit through a FBS in UL. We analyze the impact that this type of association has on the average throughput in the system.Comment: 4 pages, 3 figures, submitted to IEEE Wireless Communications Letter

    Interference Management in 5G Reverse TDD HetNets with Wireless Backhaul: A Large System Analysis

    Get PDF
    This work analyzes a heterogeneous network (HetNet), which comprises a macro base station (BS) equipped with a large number of antennas and an overlaid dense tier of small cell access points (SCAs) using a wireless backhaul for data traffic. The static and low mobility user equipment terminals (UEs) are associated with the SCAs while those with medium-to-high mobility are served by the macro BS. A reverse time division duplexing (TDD) protocol is used by the two tiers, which allows the BS to locally estimate both the intra-tier and inter-tier channels. This knowledge is then used at the BS either in the uplink (UL) or in the downlink (DL) to simultaneously serve the macro UEs (MUEs) and to provide the wireless backhaul to SCAs. A geographical separation of co-channel SCAs is proposed to limit the interference coming from the UL signals of MUEs. A concatenated linear precoding technique employing either zero-forcing (ZF) or regularized ZF is used at the BS to simultaneously serve MUEs and SCAs in DL while nulling interference toward those SCAs in UL. We evaluate and characterize the performance of the system through the power consumption of UL and DL transmissions under the assumption that target rates must be satisfied and imperfect channel state information is available for MUEs. The analysis is conducted in the asymptotic regime where the number of BS antennas and the network size (MUEs and SCAs) grow large with fixed ratios. Results from large system analysis are used to provide concise formulae for the asymptotic UL and DL transmit powers and precoding vectors under the above assumptions. Numerical results are used to validate the analysis in different settings and to make comparisons with alternative network architectures.Comment: 14 pages, 12 figures. To appear IEEE J. Select. Areas Commun. -- Special Issue on HetNet
    • …
    corecore