309,758 research outputs found

    Valuing Natural Space and Landscape Fragmentation in Richmond, VA

    Get PDF
    Hedonic pricing methods and GIS (Geographic Information Systems) were used to evaluate relationships between sale price of single family homes and landscape fragmentation and natural land cover. Spatial regression analyses found that sale prices increase as landscapes become less fragmented and the amount of natural land cover around a home increases. The projected growth in population and employment in the Richmond, Virginia region and subsequent increases in land development and landscape fragmentation presents a challenge to sustaining intact healthy ecosystems in the Richmond region. Spatial regression analyses helped illuminate how land cover patterns influence sale prices and landscape patterns that are economically and ecologically advantageous

    Characterizing forest fragmentation : Distinguishing change in composition from configuration

    Get PDF
    This project was funded by the Government of Canada through the Mountain Pine Beetle Program, a three-year, $100 million program administered by Natural Resources Canada, Canadian Forest Service. Additional information on the Mountain Pine Beetle Program may be found at: http://mpb.cfs.nrcan.gc.ca.Forest fragmentation can generally be considered as two components: 1) compositional change representing forest loss, and 2) configurational change or change in the arrangement of forest land cover. Forest loss and configurational change occur simultaneously, resulting in difficulties isolating the impacts of each component. Measures of forest fragmentation typically consider forest loss and configurational change together. The ecological responses to forest loss and configurational change are different, thus motivating the creation of measures capable of isolating these separate components. In this research, we develop and demonstrate a measure, the proportion of landscape displacement from configuration (P), to quantify the relative contributions of forest loss and configurational change to forest fragmentation. Landscapes with statistically significant forest loss or configurational change are identified using neutral landscape simulations to generate underlying distributions for P. The new measure, P, is applied to a forest landscape where substantial forest loss has occurred from mountain pine beetle mitigation and salvage harvesting. The percent of forest cover and six LPIs (edge density, number of forest patches, area of largest forest patch, mean perimeter area ratio, corrected mean perimeter area ratio, and aggregation index) are used to quantify forest fragmentation and change. In our study area, significant forest loss occurs more frequently than significant configurational change. The P method we demonstrate is effective at identifying landscapes undergoing significant forest loss, significant configurational change, or experiencing a combination of both loss and configurational change.PostprintPeer reviewe

    ORGANIC FARMS AS REFUGES FOR SMALL MAMMAL BIODIVERSITY

    Get PDF
    Habitat fragmentation, the process by which relatively continuous habitats is broken into smaller pieces, occurs in natural systems but is to a high degree also human- induced through landscape use. Fragmentation of the landscape produces a series of habitat patches surrounded by a matrix of different habitats and/or land use regimes. The major landscape consequences of fragmentation are loss of habitat, reduction in habitat patch size, and increasing isolation of habitat patches. In general, population performance declines in response to habitat loss but size of remaining area and isolation effects is known also to influence the population trend. Small mammals are well suited for examination of population responses to habitat fragmentation as they have modest spatial requirements and short generation times. In theory, organic farms could play an important role in the agricultural landscape as refuges for some small mammal species, as the lack of pesticide and fertiliser treatment, less weed control, more diversified crop structure and a general environmentalfriendly attitude, form a basis for habitats that provide cover and food for small mammals, and thus for larger predators of these species. Furthermore, density and area of small biotopes could be expected to be higher in the organic farms, thus leading to a decreased distance between optimal habitats

    Fragmentation Increases Impact of Wind Disturbance on Forest Structure and Carbon Stocks in a Western Amazonian Landscape

    Get PDF
    Tropical second-growth forests could help mitigate climate change, but the degree to which their carbon potential is achieved will depend on exposure to disturbance. Wind disturbance is common in tropical forests, shaping structure, composition, and function, and influencing successional trajectories. However, little is known about the impacts of extreme winds in fragmented landscapes, though second-growth forests are often located in mosaics of forest, pasture, cropland, and other land cover types. Though indirect evidence suggests that fragmentation increases risk of wind damage, few studies have found such impacts following severe storms. In this study, we ask whether fragmentation and forest type (old vs. second growth) were associated with variation in wind damage after a severe convective storm in a fragmented production landscape in western Amazonia. We applied linear spectral unmixing to Landsat 8 imagery from before and after the storm, and combined it with field observations of damage to map wind effects on forest structure and biomass (Figure 4, 5). We also used Landsat 8 imagery to map land cover with the goals of identifying old- and second-growth forest and characterizing fragmentation. We used these data to assess variation in wind disturbance across 95,596 hectares of forest, distributed over 6,110 patches. We find that fragmentation is significantly associated with wind damage, with damage severity higher at forest edges and in edgier, more isolated patches (Figure 7). Damage was more severe in old-growth than in second-growth forests, but this effect was weaker than that of fragmentation (Figure 8). These results illustrate the importance of considering spatial configuration and landscape context in planning tropical forest restoration and predicting carbon sequestration in second-growth forests. Future research should address the mechanisms behind these results, to minimize wind damage risk in second-growth forests so their carbon potential can be maximally achieved

    Parks, people and pixels: evaluating landscape effects of an East African national park on its surroundings

    Get PDF
    Landscapes surrounding protected areas, while still containing considerable biodiversity, have rapidly growing human populations and associated agricultural development in most of the developing world that tend to isolate them, potentially reducing their conservation value. Using field studies and multi-temporal Landsat imagery, we examine a forest park, Kibale National Park in western Uganda, its changes over time, and related land cover change in the surrounding landscape. We find Kibale has successfully defended its borders and prevents within-park deforestation and other land incursions, and has maintained tree cover throughout the time period of the study. Outside the park there was a significant increase in tea plantations and continued forest fragmentation and wetland loss. The question of whether the park is a conservation success because of the network of forest fragments and wetlands or in spite of them remains unanswered

    Semi-inclusive charged-pion electroproduction off protons and deuterons: Cross sections, ratios, and access to the quark-parton model at low energies

    Get PDF
    A large set of cross sections for semi-inclusive electroproduction of charged pions (π^±) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared W^2>4 GeV^2 (up to ≈7 GeV^2) and range in four-momentum transfer squared 2<Q^2<4 (GeV/c)^2, and cover a range in the Bjorken scaling variable 0.2<x<0.6. The fractional energy of the pions spans a range 0.3<z<1, with small transverse momenta with respect to the virtual-photon direction, Pt^(2)_(t)<0.2 (GeV/c)2. The invariant mass that goes undetected, M_x or W′, is in the nucleon resonance region, W′<2 GeV. The new data conclusively show the onset of quark-hadron duality in this process, and the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark→pion production mechanisms. The x, z, and Pt^(2)_(t) dependences of several ratios (the ratios of favored-unfavored fragmentation functions, charged pion ratios, deuteron-hydrogen and aluminum-deuteron ratios for π^+ and π^−) have been studied. The ratios are found to be in good agreement with expectations based upon a high-energy quark-parton model description. We find the azimuthal dependences to be small, as compared to exclusive pion electroproduction, and consistent with theoretical expectations based on tree-level factorization in terms of transverse-momentum-dependent parton distribution and fragmentation functions. In the context of a simple model, the initial transverse momenta of d quarks are found to be slightly smaller than for u quarks, while the transverse momentum width of the favored fragmentation function is about the same as for the unfavored one, and both fragmentation widths are larger than the quark widths
    corecore