3 research outputs found

    Courcelle's theorem for triangulations

    No full text

    Courcelle's theorem for triangulations

    No full text
    In graph theory, Courcelle's theorem essentially states that, if an algorithmic problem can be formulated in monadic second-order logic, then it can be solved in linear time for graphs of bounded treewidth. We prove such a metatheorem for a general class of triangulations of arbitrary fixed dimension d, including all triangulated d-manifolds: if an algorithmic problem can be expressed in monadic second-order logic, then it can be solved in linear time for triangulations whose dual graphs have bounded treewidth. We apply our results to 3-manifold topology, a setting with many difficult computational problems but very few parameterised complexity results, and where treewidth has practical relevance as a parameter. Using our metatheorem, we recover and generalise earlier fixed-parameter tractability results on taut angle structures and discrete Morse theory respectively, and prove a new fixed-parameter tractability result for computing the powerful but complex Turaev–Viro invariants on 3-manifolds
    corecore