4 research outputs found

    Unsupervised Vehicle Counting via Multiple Camera Domain Adaptation

    Full text link
    Monitoring vehicle flows in cities is crucial to improve the urban environment and quality of life of citizens. Images are the best sensing modality to perceive and assess the flow of vehicles in large areas. Current technologies for vehicle counting in images hinge on large quantities of annotated data, preventing their scalability to city-scale as new cameras are added to the system. This is a recurrent problem when dealing with physical systems and a key research area in Machine Learning and AI. We propose and discuss a new methodology to design image-based vehicle density estimators with few labeled data via multiple camera domain adaptations.Comment: 1st International Workshop on New Foundations for Human-Centered AI (NeHuAI) at ECAI-202

    A deep learning-based pipeline for whitefly pest abundance estimation on chromotropic sticky traps

    Get PDF
    Integrated Pest Management (IPM) is an essential approach used in smart agriculture to manage pest populations and sustainably optimize crop production. One of the cornerstones underlying IPM solutions is pest monitoring, a practice often performed by farm owners by using chromotropic sticky traps placed on insect hot spots to gauge pest population densities. In this paper, we propose a modular model-agnostic deep learning-based counting pipeline for estimating the number of insects present in pictures of chromotropic sticky traps, thus reducing the need for manual trap inspections and minimizing human effort. Additionally, our solution generates a set of raw positions of the counted insects and confidence scores expressing their reliability, allowing practitioners to filter out unreliable predictions. We train and assess our technique by exploiting PST - Pest Sticky Traps, a new collection of dot-annotated images we created on purpose and we publicly release, suitable for counting whiteflies. Experimental evaluation shows that our proposed counting strategy can be a valuable Artificial Intelligence-based tool to help farm owners to control pest outbreaks and prevent crop damages effectively. Specifically, our solution achieves an average counting error of approximately compared to human capabilities requiring a matter of seconds, a large improvement respecting the time-intensive process of manual human inspections, which often take hours or even days

    Counting Vehicles with Deep Learning in Onboard UAV Imagery

    No full text
    The integration of mobile and ubiquitous computing with deep learning methods is a promising emerging trend that aims at moving the processing task closer to the data source rather than bringing the data to a central node. The advantages of this approach range from bandwidth reduction, high scalability, to high reliability, just to name a few. In this paper, we propose a real-time deep learning approach to automatically detect and count vehicles in videos taken from a UAV (Unmanned Aerial Vehicle). Our solution relies on a convolutional neural network-based model fine-tuned to the specific domain of applications that is able to precisely localize instances of the vehicles using a regression approach, straight from image pixels to bounding box coordinates, reasoning globally about the image when making predictions and implicitly encoding contextual information. A comprehensive experimental evaluation on real-world datasets shows that our approach results in state-of-the-art performances. Furthermore, our solution achieves real-time performances by running at a speed of 4 Frames Per Second on an NVIDIA Jetson TX2 board, showing the potentiality of this approach for real-time processing in UAVs
    corecore