1,094 research outputs found

    Boolean Dynamics with Random Couplings

    Full text link
    This paper reviews a class of generic dissipative dynamical systems called N-K models. In these models, the dynamics of N elements, defined as Boolean variables, develop step by step, clocked by a discrete time variable. Each of the N Boolean elements at a given time is given a value which depends upon K elements in the previous time step. We review the work of many authors on the behavior of the models, looking particularly at the structure and lengths of their cycles, the sizes of their basins of attraction, and the flow of information through the systems. In the limit of infinite N, there is a phase transition between a chaotic and an ordered phase, with a critical phase in between. We argue that the behavior of this system depends significantly on the topology of the network connections. If the elements are placed upon a lattice with dimension d, the system shows correlations related to the standard percolation or directed percolation phase transition on such a lattice. On the other hand, a very different behavior is seen in the Kauffman net in which all spins are equally likely to be coupled to a given spin. In this situation, coupling loops are mostly suppressed, and the behavior of the system is much more like that of a mean field theory. We also describe possible applications of the models to, for example, genetic networks, cell differentiation, evolution, democracy in social systems and neural networks.Comment: 69 pages, 16 figures, Submitted to Springer Applied Mathematical Sciences Serie

    Computing by nowhere increasing complexity

    Full text link
    A cellular automaton is presented whose governing rule is that the Kolmogorov complexity of a cell's neighborhood may not increase when the cell's present value is substituted for its future value. Using an approximation of this two-dimensional Kolmogorov complexity the underlying automaton is shown to be capable of simulating logic circuits. It is also shown to capture trianry logic described by a quandle, a non-associative algebraic structure. A similar automaton whose rule permits at times the increase of a cell's neighborhood complexity is shown to produce animated entities which can be used as information carriers akin to gliders in Conway's game of life

    Intrinsically universal one-dimensional quantum cellular automata in two flavours

    Full text link
    We give a one-dimensional quantum cellular automaton (QCA) capable of simulating all others. By this we mean that the initial configuration and the local transition rule of any one-dimensional QCA can be encoded within the initial configuration of the universal QCA. Several steps of the universal QCA will then correspond to one step of the simulated QCA. The simulation preserves the topology in the sense that each cell of the simulated QCA is encoded as a group of adjacent cells in the universal QCA. The encoding is linear and hence does not carry any of the cost of the computation. We do this in two flavours: a weak one which requires an infinite but periodic initial configuration and a strong one which needs only a finite initial configuration. KEYWORDS: Quantum cellular automata, Intrinsic universality, Quantum computation.Comment: 27 pages, revtex, 23 figures. V3: The results of V1-V2 are better explained and formalized, and a novel result about intrinsic universality with only finite initial configurations is give
    corecore