2 research outputs found

    Low-Cost Anti-Copying 2D Barcode by Exploiting Channel Noise Characteristics

    Full text link
    In this paper, for overcoming the drawbacks of the prior approaches, such as low generality, high cost, and high overhead, we propose a Low-Cost Anti-Copying (LCAC) 2D barcode by exploiting the difference between the noise characteristics of legal and illegal channels. An embedding strategy is proposed, and for a variant of it, we also make the corresponding analysis. For accurately evaluating the performance of our approach, a theoretical model of the noise in an illegal channel is established by using a generalized Gaussian distribution. By comparing with the experimental results based on various printers, scanners, and a mobile phone, it can be found that the sample histogram and curve fitting of the theoretical model match well, so it can be concluded that the theoretical model works well. For evaluating the security of the proposed LCAC code, besides the direct-copying (DC) attack, the improved version, which is the synthesized-copying (SC) attack, is also considered in this paper. Based on the theoretical model, we build a prediction function to optimize the parameters of our approach. The parameters optimization incorporates the covertness requirement, the robustness requirement and a tradeoff between the production cost and the cost of illegally-copying attacks together. The experimental results show that the proposed LCAC code with two printers and two scanners can detect the DC attack effectively and resist the SC attack up to the access of 14 legal copies

    On Microstructure Estimation Using Flatbed Scanners for Paper Surface Based Authentication

    Full text link
    Paper surfaces under the microscopic view are observed to be formed by intertwisted wood fibers. Such structures of paper surfaces are unique from one location to another and are almost impossible to duplicate. Previous work used microscopic surface normals to characterize such intrinsic structures as a "fingerprint" of paper for security and forensic applications. In this work, we examine several key research questions of feature extraction in both scientific and engineering aspects to facilitate the deployment of paper surface-based authentication when flatbed scanners are used as the acquisition device. We analytically show that, under the unique optical setup of flatbed scanners, the specular reflection does not play a role in norm map estimation. We verify, using a larger dataset than prior work, that the scanner-acquired norm maps, although blurred, are consistent with those measured by confocal microscopes. We confirm that, when choosing an authentication feature, high spatial-frequency subbands of the heightmap are more powerful than the norm map. Finally, we show that it is possible to empirically calculate the physical dimensions of the paper patch needed to achieve a certain authentication performance in equal error rate (EER). We analytically show that log(EER) is decreasing linearly in the edge length of a paper patch.Comment: This paper is published in IEEE Transactions on Information Forensics and Securit
    corecore