51,935 research outputs found
Structuring visual exploratory analysis of skill demand
The analysis of increasingly large and diverse data for meaningful interpretation and question answering is handicapped by human cognitive limitations. Consequently, semi-automatic abstraction of complex data within structured information spaces becomes increasingly important, if its knowledge content is to support intuitive, exploratory discovery. Exploration of skill demand is an area where regularly updated, multi-dimensional data may be exploited to assess capability within the workforce to manage the demands of the modern, technology- and data-driven economy. The knowledge derived may be employed by skilled practitioners in defining career pathways, to identify where, when and how to update their skillsets in line with advancing technology and changing work demands. This same knowledge may also be used to identify the combination of skills essential in recruiting for new roles. To address the challenges inherent in exploring the complex, heterogeneous, dynamic data that feeds into such applications, we investigate the use of an ontology to guide structuring of the information space, to allow individuals and institutions to interactively explore and interpret the dynamic skill demand landscape for their specific needs. As a test case we consider the relatively new and highly dynamic field of Data Science, where insightful, exploratory data analysis and knowledge discovery are critical. We employ context-driven and task-centred scenarios to explore our research questions and guide iterative design, development and formative evaluation of our ontology-driven, visual exploratory discovery and analysis approach, to measure where it adds value to users’ analytical activity. Our findings reinforce the potential in our approach, and point us to future paths to build on
Requirements for Information Extraction for Knowledge Management
Knowledge Management (KM) systems inherently suffer from the knowledge acquisition bottleneck - the difficulty of modeling and formalizing knowledge relevant for specific domains. A potential solution to this problem is Information Extraction (IE) technology. However, IE was originally developed for database population and there is a mismatch between what is required to successfully perform KM and what current IE technology provides. In this paper we begin to address this issue by outlining requirements for IE based KM
The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation
Background.  
The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration.  There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics  community.  Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community.

Description. 
SADI – Semantic Automated Discovery and Integration – is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains.  Using Semantic Web technologies at every level of the Web services “stack”, SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices.  In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers.

Conclusions.
SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users.  In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behavior we have not observed in any other Semantic system.  Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner very similar to data housed in static triple-stores, thus facilitating the intersection of Web services and Semantic Web technologies
Exploring cognitive issues in visual information retrieval
A study was conducted that compared user performance across a range of search tasks supported by both a textual and a visual information retrieval interface (VIRI). Test scores representing seven distinct cognitive abilities were examined in relation to user performance. Results indicate that, when using VIRIs, visual-perceptual abilities account for significant amounts of within-subjects variance, particularly when the relevance criteria were highly specific. Visualisation ability also seemed to be a critical factor when users were
required to change topical perspective within the visualisation. Suggestions are made for navigational cues that may help to reduce the effects of these individual differences
- …
