3,143 research outputs found

    Some new results on decidability for elementary algebra and geometry

    Get PDF
    We carry out a systematic study of decidability for theories of (a) real vector spaces, inner product spaces, and Hilbert spaces and (b) normed spaces, Banach spaces and metric spaces, all formalised using a 2-sorted first-order language. The theories for list (a) turn out to be decidable while the theories for list (b) are not even arithmetical: the theory of 2-dimensional Banach spaces, for example, has the same many-one degree as the set of truths of second-order arithmetic. We find that the purely universal and purely existential fragments of the theory of normed spaces are decidable, as is the AE fragment of the theory of metric spaces. These results are sharp of their type: reductions of Hilbert's 10th problem show that the EA fragments for metric and normed spaces and the AE fragment for normed spaces are all undecidable.Comment: 79 pages, 9 figures. v2: Numerous minor improvements; neater proofs of Theorems 8 and 29; v3: fixed subscripts in proof of Lemma 3

    Independence in computable algebra

    Full text link
    We give a sufficient condition for an algebraic structure to have a computable presentation with a computable basis and a computable presentation with no computable basis. We apply the condition to differentially closed, real closed, and difference closed fields with the relevant notions of independence. To cover these classes of structures we introduce a new technique of safe extensions that was not necessary for the previously known results of this kind. We will then apply our techniques to derive new corollaries on the number of computable presentations of these structures. The condition also implies classical and new results on vector spaces, algebraically closed fields, torsion-free abelian groups and Archimedean ordered abelian groups.Comment: 24 page

    The homotopy theory of bialgebras over pairs of operads

    Get PDF
    We endow the category of bialgebras over a pair of operads in distribution with a cofibrantly generated model category structure. We work in the category of chain complexes over a field of characteristic zero. We split our construction in two steps. In the first step, we equip coalgebras over an operad with a cofibrantly generated model category structure. In the second one we use the adjunction between bialgebras and coalgebras via the free algebra functor. This result allows us to do classical homotopical algebra in various categories such as associative bialgebras, Lie bialgebras or Poisson bialgebras in chain complexes.Comment: 27 pages, final version, to appear in the Journal of Pure and Applied Algebr
    • …
    corecore