3 research outputs found

    Types of cost in inductive concept learning

    Get PDF
    Inductive concept learning is the task of learning to assign cases to a discrete set of classes. In real-world applications of concept learning, there are many different types of cost involved. The majority of the machine learning literature ignores all types of cost (unless accuracy is interpreted as a type of cost measure). A few papers have investigated the cost of misclassification errors. Very few papers have examined the many other types of cost. In this paper, we attempt to create a taxonomy of the different types of cost that are involved in inductive concept learning. This taxonomy may help to organize the literature on cost-sensitive learning. We hope that it will inspire researchers to investigate all types of cost in inductive concept learning in more depth

    Temporally Layered Architecture for Efficient Continuous Control

    Full text link
    We present a temporally layered architecture (TLA) for temporally adaptive control with minimal energy expenditure. The TLA layers a fast and a slow policy together to achieve temporal abstraction that allows each layer to focus on a different time scale. Our design draws on the energy-saving mechanism of the human brain, which executes actions at different timescales depending on the environment's demands. We demonstrate that beyond energy saving, TLA provides many additional advantages, including persistent exploration, fewer required decisions, reduced jerk, and increased action repetition. We evaluate our method on a suite of continuous control tasks and demonstrate the significant advantages of TLA over existing methods when measured over multiple important metrics. We also introduce a multi-objective score to qualitatively assess continuous control policies and demonstrate a significantly better score for TLA. Our training algorithm uses minimal communication between the slow and fast layers to train both policies simultaneously, making it viable for future applications in distributed control.Comment: 10 Pages, 2 Figures, 3 Tables. arXiv admin note: text overlap with arXiv:2301.0072
    corecore