53,269 research outputs found

    Towards Profit Maximization for Online Social Network Providers

    Full text link
    Online Social Networks (OSNs) attract billions of users to share information and communicate where viral marketing has emerged as a new way to promote the sales of products. An OSN provider is often hired by an advertiser to conduct viral marketing campaigns. The OSN provider generates revenue from the commission paid by the advertiser which is determined by the spread of its product information. Meanwhile, to propagate influence, the activities performed by users such as viewing video ads normally induce diffusion cost to the OSN provider. In this paper, we aim to find a seed set to optimize a new profit metric that combines the benefit of influence spread with the cost of influence propagation for the OSN provider. Under many diffusion models, our profit metric is the difference between two submodular functions which is challenging to optimize as it is neither submodular nor monotone. We design a general two-phase framework to select seeds for profit maximization and develop several bounds to measure the quality of the seed set constructed. Experimental results with real OSN datasets show that our approach can achieve high approximation guarantees and significantly outperform the baseline algorithms, including state-of-the-art influence maximization algorithms.Comment: INFOCOM 2018 (Full version), 12 page

    LiveRank: How to Refresh Old Datasets

    Get PDF
    This paper considers the problem of refreshing a dataset. More precisely , given a collection of nodes gathered at some time (Web pages, users from an online social network) along with some structure (hyperlinks, social relationships), we want to identify a significant fraction of the nodes that still exist at present time. The liveness of an old node can be tested through an online query at present time. We call LiveRank a ranking of the old pages so that active nodes are more likely to appear first. The quality of a LiveRank is measured by the number of queries necessary to identify a given fraction of the active nodes when using the LiveRank order. We study different scenarios from a static setting where the Liv-eRank is computed before any query is made, to dynamic settings where the LiveRank can be updated as queries are processed. Our results show that building on the PageRank can lead to efficient LiveRanks, for Web graphs as well as for online social networks
    corecore