6 research outputs found

    Asymptotically Optimal Sampling-Based Motion Planning Methods

    Full text link
    Motion planning is a fundamental problem in autonomous robotics that requires finding a path to a specified goal that avoids obstacles and takes into account a robot's limitations and constraints. It is often desirable for this path to also optimize a cost function, such as path length. Formal path-quality guarantees for continuously valued search spaces are an active area of research interest. Recent results have proven that some sampling-based planning methods probabilistically converge toward the optimal solution as computational effort approaches infinity. This survey summarizes the assumptions behind these popular asymptotically optimal techniques and provides an introduction to the significant ongoing research on this topic.Comment: Posted with permission from the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4. Copyright 2021 by Annual Reviews, https://www.annualreviews.org/. 25 pages. 2 figure

    Cost-Aware Path Planning Under Co-Safe Temporal Logic Specifications

    No full text

    ๋ณต์žกํ•œ ์ƒํ™ฉ์—์„œ ํ•™์Šต ๋ณด์กฐ ๊ทœ์น™ ๊ธฐ๋ฐ˜ ์ฐจ๋Ÿ‰ ๋„ค๋น„๊ฒŒ์ด์…˜

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€,2020. 2. ์˜ค์„ฑํšŒ.๋ณธ ๋…ผ๋ฌธ์€ ์ƒ์œ„๋‹จ๊ณ„ ์กฐ๊ฑด์ด ๋ช…์‹œ๋œ ์ƒํ™ฉ์—์„œ ๋กœ๋ด‡์˜ motion planning ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ์ƒ์œ„๋‹จ๊ณ„ ์กฐ๊ฑด์€ ์•ˆ์ „์„ฑ ์ œํ•œ์กฐ๊ฑด ํ˜น์€ ์ž„๋ฌด ์กฐ๊ฑด๋“ค์„ ๋งํ•˜๋ฉฐ, ๋ณดํ†ต ์‚ฌ์šฉ์ž๋กœ๋ถ€ํ„ฐ ์ฃผ์–ด์ง„๋‹ค. ๋‹ค์–‘ํ•œ motion planning ๋ฌธ์ œ ์ค‘์—์„œ ๋กœ๋ด‡ ๋‚ด๋น„๊ฒŒ์ด์…˜ ๋ฌธ์ œ์— ๋Œ€ํ•ด ์ดˆ์ ์„ ๋‘์—ˆ์œผ๋ฉฐ, ์ƒ์œ„๋‹จ๊ณ„ ์กฐ๊ฑด์€ ๋…ผ๋ฆฌ์  ํ‘œํ˜„์ค‘ ํ•˜๋‚˜์ธ ์‹œ๊ฐ„๋…ผ๋ฆฌ(Temporal Logic)์„ ํ†ตํ•ด ํ‘œํ˜„๋˜์—ˆ๋‹ค. ์‹œ๊ฐ„๋…ผ๋ฆฌ๋Š” ๋ณต์žกํ•œ ์ž„๋ฌด๋‚˜ ๊ทœ์น™๋“ค์˜ ์ƒ์„ธํ•œ ๋‚ด์šฉ์„ ๋กœ๋ด‡์ด ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ๋‹จ๊ณ„๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์‹œ๊ฐ„๋…ผ๋ฆฌ๋กœ ํ‘œํ˜„๋œ ์ƒ์œ„๋‹จ๊ณ„ ์กฐ๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ๊ฒƒ๊ณผ ์ตœ์ ์˜ ํ•ด๋ฅผ ์ฐพ๋Š” ๊ฒƒ ๋‘ ๊ฐ€์ง€๋ฅผ ๋ชจ๋‘ ๋‹ค๋ฃจ๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๋กœ๋ณดํ‹ฑ์Šค ๋ถ„์•ผ์—์„œ ์˜ค๋žซ๋™์•ˆ ํฅ๋ฏธ๋กœ์šด ์ฃผ์ œ์ด๋‹ค. ์ด ๋‘ ๊ฐ€์ง€ ๋ชฉํ‘œ๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ๋†’์€ ๊ณ„์‚ฐ๋Ÿ‰์„ ์š”๊ตฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์šฐ๋ฆฌ๋Š” ๊ธฐ๊ณ„ํ•™์Šต ๋“ฑ์„ ์ ์šฉํ•จ์œผ๋กœ์จ ํšจ์œจ์ ์ธ ํ•ด๋ฅผ ์ฐพ๋Š” ๋ฐ ์ฃผ๋ ฅํ•˜์˜€๋‹ค. ์‹œ๊ฐ„๋…ผ๋ฆฌ์‹์„ ์ œํ•œ์กฐ๊ฑด์œผ๋กœ ๋กœ๋ด‡ motion planning ์—ฐ๊ตฌํ•œ ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์‹œ๊ฐ„๋…ผ๋ฆฌ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ๋ฐ๋Š” ์„ฑ๊ณตํ–ˆ์ง€๋งŒ ๋ช‡ ๊ฐ€์ง€ ๋‹จ์ ์„ ๋ณด์ธ๋‹ค. ๊ทธ ์ค‘ ์ฒซ ๋ฒˆ์งธ๋Š” ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ discrete system์„ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค๋Š” ์ ๊ณผ ๋‘ ๋ฒˆ์งธ๋กœ ๊ฑฐ๋ฆฌ์™€ ๊ฐ™์ด ๋‹จ์ˆœํ•œ ํ˜•ํƒœ์˜ ๋น„์šฉ๋งŒ์„ ๊ณ ์ง‘ํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ์ฐจ์ด์ ์„ ๋‘๊ณ ์ž, ๋ณธ ๋…ผ๋ฌธ์€ ์„ ํ˜•์‹œ๊ฐ„๋…ผ๋ฆฌ(Linear Temporal Logic)์œผ๋กœ ํ‘œํ˜„๋œ ์ž„๋ฌด ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๊ฒŒ ํ•˜๋ฉด์„œ ๋น„์šฉ ์ตœ์ ํ™”๋œ ๊ฒฝ๋กœ๋ฅผ ๋„์ถœํ•˜๋Š” offline motion planning ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ configuration ๊ณต๊ฐ„์ƒ์—์„œ ๋น„์šฉ์ด ์ž„์˜๋กœ ์ •์˜๋˜์–ด ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์˜€๋Š”๋ฐ, ๋Œ€ํ‘œ์ ์ธ ์˜ˆ์‹œ๋กœ๋Š” ์œ„ํ—˜ ๋ ˆ๋ฒจ, ๋ฌด์„ ํ†ต์‹  ์—ฐ๊ฒฐ, ํ˜น์€ ์—๋„ˆ์ง€ ์†Œ๋น„์ง€๋„ ๋“ฑ์„ ๋“ค ์ˆ˜ ์žˆ๊ฒ ๋‹ค. ํšจ์œจ์ ์œผ๋กœ ๋‚ฎ์€ ๋น„์šฉ์˜ ๊ฒฝ๋กœ๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด์„œ, ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ RRT๊ตฌ์กฐ์—์„œ cross-entropy ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•œ extension์„ ๋„์ž…ํ•˜์˜€๋‹ค. ๋˜ํ•œ RRT*์˜ rewiring ๊ณผ์ •์€ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์ด asymptotic optimality๋ฅผ ๋งŒ์กฑํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ์•ž์„œ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ task ๊ด€์ ์—์„œ ์‹œ๊ฐ„๋…ผ๋ฆฌ ์กฐ๊ฑด์ด ํ™œ์šฉ๋œ ๋ฐ˜๋ฉด, ์šฐ๋ฆฌ๋Š” ์‹œ๊ฐ„๋…ผ๋ฆฌ๋กœ ํ‘œํ˜„๋œ ์—ฌ๋Ÿฌ ๊ทœ์น™์ด ์กด์žฌํ•˜๋Š” ์ƒํ™ฉ์—์„œ์˜ control synthesis๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ƒํ™ฉ๊ณผ ๊ฐ€์žฅ ์ž˜ ๋ถ€ํ•ฉํ•˜๋Š” ๊ฒƒ์€ ๋ฐ”๋กœ ์ž์œจ์ฃผํ–‰ ๋ฌธ์ œ์ด๋‹ค. ์šด์ „์ž๋Š” ๋‹ค์–‘ํ•œ ๊ตํ†ต ๊ทœ์น™์ด ์กด์žฌํ•˜๋Š” ์ƒํ™ฉ์—์„œ ํšจ์œจ์ ์œผ๋กœ ์šด์ „์„ ํ•ด์•ผ ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋ชจ๋“  ๊ทœ์น™์ด ๋งŒ์กฑํ•˜์ง€ ๋ชปํ•˜๋Š” ์ƒํ™ฉ์— ์ดˆ์ ์„ ๋‘์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋”œ๋ ˆ๋งˆ๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ์–ด๋– ํ•œ ๊ทœ์น™์ด ์šฐ์„ ์‹œ๋˜๊ณ  ๋ฌด์‹œ๋˜์–ด์•ผ ํ• ์ง€ ๊ฒฐ์ •ํ•˜๋„๋ก ๊ฐ•์š”ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ํ•™์Šต ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด(MPC)๋ฅผ ์ œ์•ˆํ•˜์˜€์œผ๋ฉฐ, ๊ฐ€์žฅ ํฐ ์•„์ด๋””์–ด๋Š” ํ•™์Šต๊ณผ ๊ณ ์ „์  ์ œ์–ด๊ธฐ๋ฒ•์„ ์ž˜ ๊ฒฐํ•ฉํ•จ์œผ๋กœ์จ ์ œ์•ˆ๋œ controller๊ฐ€ ์‚ฌ๋žŒ์ฒ˜๋Ÿผ ํ–‰๋™ํ•˜๋„๋ก ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๊ทœ์น™์€ ์‹ ํ˜ธ์‹œ๊ฐ„๋…ผ๋ฆฌ(Signal Temporal Logic)์„ ํ†ตํ•ด ๋ชจ๋ธ๋ง ๋˜์—ˆ์œผ๋ฉฐ, ๊ทœ์น™์˜ ๋งŒ์กฑ ์ •๋„๋ฅผ ์˜๋ฏธํ•˜๋Š” robustness slackness๊ฐ€ ์‚ฌ๋žŒ์˜ ์ฃผํ–‰๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ํ•™์Šต์ด ๋˜์—ˆ๋‹ค. ์•ž์„œ ํ•™์Šต๋œ robustness slackness๋Š” ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด ๊ธฐ๋ฒ•์— ํ™œ์šฉ๋จ์œผ๋กœ์จ, ์ƒํ™ฉ๋งˆ๋‹ค ์–ด๋– ํ•œ ๊ทœ์น™์ด ์šฐ์„ ์‹œ๋˜์–ด์•ผ ํ• ์ง€ ํŒ๋‹จํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ์ž์œจ์ฃผํ–‰์—์„œ ์ฃผ์œ„ ์ฐจ๋Ÿ‰์˜ ๋ฏธ๋ž˜ ์›€์ง์ž„๊ณผ ๊ทœ์น™ ์กฐ๊ฑด์„ ๋ชจ๋‘ ๊ณ ๋ คํ•œ ์—ฐ๊ตฌ์—ญ์‹œ ๋ณธ ๋…ผ๋ฌธ์—์„œ ๋‹ค๋ฃจ์—ˆ๋‹ค. ๋ณต์žกํ•œ ์ƒํ™ฉ์—์„œ ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰์ด ์•ˆ์ „ํ•œ ์ฃผํ–‰์„ ํ•˜๋ ค๋ฉด, ํ˜„์žฌํ•œ ์ƒํ™ฉ์— ๋Œ€ํ•œ ๋ช…ํ™•ํ•œ ์ดํ•ด๊ฐ€ ์„ ํ–‰๋˜์–ด์•ผ ํ•˜๋ฉฐ ์ด๋Š” ์ž์œจ์ฃผํ–‰ ๋ฌธ์ œ์—์„œ ๊ต‰์žฅํžˆ ์ค‘์š”ํ•œ ๋ฌธ์ œ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์ดํ•ด๋Š” ์ฃผ์œ„ ์ฐจ๋Ÿ‰์˜ ๋ฏธ๋ž˜ ์›€์ง์ž„์„ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ๊ณผ ํ˜„์žฌ ์–ด๋– ํ•œ ๊ทœ์น™์„ ์ง€์ผœ์•ผ ํ•˜๋Š” ์ธ์‹ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด์™€ ์ตœ๊ทผ์— ๋– ์˜ค๋ฅด๋Š” ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์˜ ์žฅ์ ์„ ๊ฒฐํ•ฉํ•จ์œผ๋กœ์จ ๋” ์•ˆ์ „ํ•œ controller๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ๋ฐ ์ดˆ์ ์„ ๋‘์—ˆ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ๋”ฅ๋Ÿฌ๋‹ ๊ตฌ์กฐ์—์„œ ์ฃผ์œ„ ์ฐจ๋Ÿ‰์˜ ๋ฏธ๋ž˜๊ฒฝ๋กœ์™€ ๊ทœ์น™์˜ ๋งŒ์กฑ ์ •๋„๋ฅผ ๋™์‹œ์— ์ถ”๋ก ํ–ˆ์œผ๋ฉฐ, ๋”์šฑ ์ •ํ™•ํ•œ ์˜ˆ์ธก์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ํ•™์Šต๋œ ๊ทœ์น™์˜ ๋งŒ์กฑ ์ •๋„๋Š” ์˜ˆ์ธก๋œ ๊ฒฐ๊ณผ์—์„œ ์œ ํšจํ•˜์ง€ ์•Š์€ ์˜ˆ์ธก์„ ์ œ๊ฑฐํ•˜๋Š” ๋ฐ ํ™œ์šฉ๋˜์—ˆ๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ๊ตฌ์กฐ์—์„œ ์ถ”๋ก  ํ˜น์€ ์˜ˆ์ธก๋œ ์ •๋ณด๋Š” ๋ชจ๋ธ์˜ˆ์ธก์ œ์–ด ๋‹จ๊ณ„์—์„œ ํ™œ์šฉ๋จ์œผ๋กœ์จ ์•ˆ์ „์„ฑ๊ณผ ํšจ์œจ์„ฑ ๋‘ ๊ฐ€์ง€๋ฅผ ๋ชจ๋‘ ๊ณ ๋ คํ•œ ์ž์œจ์ฃผํ–‰์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ž์œจ์ฃผํ–‰๋ฌธ์ œ์—์„œ ๊ณ„์ธต์  ๋ฐฉ๋ฒ•์„ ๋„์ž…ํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๊ทœ์น™์„ ์ด์šฉํ•ด์„œ ์ฃผํ–‰์ฐจ์˜ ์›€์ง์ž„์„ ๋ฒ”์ฃผํ™” ํ•˜์˜€์œผ๋ฉฐ, ์—ฌ๊ธฐ์„œ ๊ทœ์น™์˜ ๋งŒ์กฑ ์ •๋„๊ฐ€ ์ฐจ๋Ÿ‰์˜ ์›€์ง์ž„์„ ํ‘œํ˜„ํ•˜๋Š” ์ฒ™๋„๋กœ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ ์ด๋ฅผ rule primitive๋ผ ํ‘œํ˜„ํ•˜์˜€๋‹ค. ์šฐ๋ฆฌ๋Š” ์ฐจ๋Ÿ‰ ์›€์ง์ž„ ๋ชจ๋ธ์ด rule primitive์— ์ข…์†๋˜๊ฒŒ ํ•˜์˜€๊ณ , ์ด๋ฅผ ์ฃผํ–‰๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ํ•™์Šตํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ํ•™์Šต ์‹œ ์ด์ „ ์—ฐ๊ตฌ์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ฃผ์œ„ ์ฐจ๋Ÿ‰์˜ ์ด์ „ ์›€์ง์ž„์„ ๊ณ ๋ คํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ์ƒ์œ„๋‹จ๊ณ„์—์„œ๋Š” ๊ฐ•ํ™”ํ•™์Šต์„ ํ†ตํ•ด ์ ์ ˆํ•œ rule primitive๋ฅผ ๊ณ ๋ฅด๋„๋ก ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ„์ธต์  ๊ตฌ์กฐ๋Š” ๋‹จ์ˆœํžˆ ๋ชจ๋ฐฉํ•™์Šต ํ˜น์€ ๊ฐ•ํ™”ํ•™์Šต ๋Œ€๋น„๋ณด๋‹ค ๋” ์•ˆ์ „ํ•œ controller๋ฅผ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค.The thesis focuses primarily on motion planning problems for robotics with high-level specifications. High-level specifications refer to safety restrictions or task specifications, which are given by the user. We deal with robot navigation between various motion planning problems, and high-level specifications are specified through a logical formalism which is called temporal logic. Temporal logic can specify higher levels of detail and represent complex tasks or rules that the system can understand. The thesis addresses both the satisfaction of the specified high-level specification through temporal logic and the search for the optimal solution, which has attracting widespread interest in the fields of robotics. Since considering both of the above points, satisfying high-level specifications and finding optimal solution, requires heavy computation, which makes applying temporal logic in real-world robotic problems inefficient. Given that considering the previous two points, satisfying high-level specifications and finding an optimal solution requires a heavy calculation, which makes the application of temporal logic in real-world robotic problems inefficient. The thesis minimizes this inefficiency and allows the use of temporal logic in robotics problems, especially in navigation problems. In addition, we actively use deep learning techniques, which are gaining attention recently, to provide safer and more human-friendly robot navigation algorithms. Many motion planning under temporal logic specifications studies have successfully met the specified logic constraints but have some drawbacks, they deal with problems in discrete systems or consider simple cost, such as distance. To make a difference from the existing research, we propose an offline motion planning approach generating a cost-efficient path which satisfies mission requirements specified in linear temporal logic (LTL). Our approach assume that a cost function is defined over the configuration space. Examples of a cost function include hazard levels, wireless connectivity, and energy consumption, to name a few. In order to find a low-cost trajectory with computational efficiency, the proposed method expands the RRT tree with long extensions using cross entropy, while the rewiring step of RRT* is used to preserve the asymptotic optimality. While the previous approach specifies a high-level task (or mission) for logic specification, we considered the problem of control synthesis in a situation where several safety rules were defined through temporal logic. The most representative of these problems is autonomous driving, where the driver must drive efficiently while complying with various traffic rules. A special attention is given to situations where all rules cannot be met in order to fulfill a given task. Such dilemmas compel us to make a decision on the degree of satisfaction of each rule including which rule should be maintained or not. we propose a learning-based model predictive control (MPC) method in order to solve this problem, where a key insight is to combine a learning method and traditional control scheme so that the designed controller behaves close to human experts. A rule is represented as a signal temporal logic (STL) formula. A robustness slackness, a margin to the satisfaction of the rule, is learned from expert's demonstrations using Gaussian process regression. The learned margin is used in a model predictive control procedure, which helps to decide how much to obey each rule, even ignoring specific rules. Consideration of both movement of surrounding vehicles and rule constraints are made in autonomous driving problem, which is an important issue since the autonomous vehicle must understand complex and dynamic environment. This understanding consists of predicting future behavior of nearby vehicles and recognizing predefined rules. Our approach combines benefits of both traditional control approach (MPC) with the recent deep learning method in order to design a safe vehicle controller. We jointly reason both future trajectories of vehicles and degree of satisfaction of each rule in the deep learning framework. Joint reasoning allows modeling interactions between vehicles and leads to better prediction results. Learned robustness slackness decides which rule should be prioritized for the given situation for the autonomous vehicle and filter out non-valid predicted trajectories for surrounding vehicles. The predicted information from the deep learning framework is used in model predictive control (MPC), which allows the autonomous vehicle navigate efficiently and safely. Lastly, a hierarchical approach is proposed for efficient learning controller in autonomous driving problems. We categorize the behavior of the agent based on predefined rules, a rule primitive, a margin to the satisfaction of the rule, acts as an interpretable maneuver classes for agent behavior. We let the agent movement model be conditioned on the rule primitive and ensure that the rule primitive indicates a high-level of behavior. Reinforcement learning is used to help select the appropriate high-level behavior. This hierarchical approach was able to learn a safer control strategy more efficiently than simply using imitation learning or reinforcement learning.1. Introduction 5 2. Cost-Aware Path Planning under Co-Safe Temporal Logic Specifications 11 3. Reactive Controller Synthesis for UAV Mission Planning 47 4. Learning-Based Model Predictive Control under Signal Temporal Logic Specifications 63 5. Deep Predictive Autonomous Driving Using Multi-Agent Joint Trajectory Prediction and Traffic Rules 93 6. A Hierarchical Learning Approach to Autonomous Driving Using Multi-Agent Joint Reasoning 119 Appendices 139 Bibliography 159Docto
    corecore