1,099 research outputs found

    Cost Minimization for Cooperative Computation Framework in MEC Networks

    Get PDF
    In this paper, a cooperative task computation framework exploits the computation resource in user equipments (UEs) to accomplish more tasks meanwhile minimizes the power consumption of UEs. The system cost includes the cost of UEs’ power consumption and the penalty of unaccomplished tasks, and the system cost is minimized by jointly optimizing binary offloading decisions, the computational frequencies, and the offloading transmit power. To solve the formulated mixed-integer non-linear programming problem, three efficient algorithms are proposed, i.e., integer constraints relaxation-based iterative algorithm (ICRBI), heuristic matching algorithm, and the decentralized algorithm. The ICRBI algorithm achieves the best performance at the cost of the highest complexity, while the heuristic matching algorithm significantly reduces the complexity while still providing reasonable performance. As the previous two algorithms are centralized, the decentralized algorithm is also provided to further reduce the complexity, and it is suitable for the scenarios that cannot provide the central controller. The simulation results are provided to validate the performance gain in terms of the total system cost obtained by the proposed cooperative computation framework

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    MDP-Based Scheduling Design for Mobile-Edge Computing Systems with Random User Arrival

    Full text link
    In this paper, we investigate the scheduling design of a mobile-edge computing (MEC) system, where the random arrival of mobile devices with computation tasks in both spatial and temporal domains is considered. The binary computation offloading model is adopted. Every task is indivisible and can be computed at either the mobile device or the MEC server. We formulate the optimization of task offloading decision, uplink transmission device selection and power allocation in all the frames as an infinite-horizon Markov decision process (MDP). Due to the uncertainty in device number and location, conventional approximate MDP approaches to addressing the curse of dimensionality cannot be applied. A novel low-complexity sub-optimal solution framework is then proposed. We first introduce a baseline scheduling policy, whose value function can be derived analytically. Then, one-step policy iteration is adopted to obtain a sub-optimal scheduling policy whose performance can be bounded analytically. Simulation results show that the gain of the sub-optimal policy over various benchmarks is significant.Comment: 6 pages, 3 figures; accepted by Globecom 2019; title changed to better describe the work, introduction condensed, typos correcte

    Computing on the Edge of the Network

    Get PDF
    Um Systeme der fünften Generation zellularer Kommunikationsnetze (5G) zu ermöglichen, sind Energie effiziente Architekturen erforderlich, die eine zuverlässige Serviceplattform für die Bereitstellung von 5G-Diensten und darüber hinaus bieten können. Device Enhanced Edge Computing ist eine Ableitung des Multi-Access Edge Computing (MEC), das Rechen- und Speicherressourcen direkt auf den Endgeräten bereitstellt. Die Bedeutung dieses Konzepts wird durch die steigenden Anforderungen von rechenintensiven Anwendungen mit extrem niedriger Latenzzeit belegt, die den MEC-Server allein und den drahtlosen Kanal überfordern. Diese Dissertation stellt ein Berechnungs-Auslagerungsframework mit Berücksichtigung von Energie, Mobilität und Anreizen in einem gerätegestützten MEC-System mit mehreren Benutzern und mehreren Aufgaben vor, das die gegenseitige Abhängigkeit der Aufgaben sowie die Latenzanforderungen der Anwendungen berücksichtigt.To enable fifth generation cellular communication network (5G) systems, energy efficient architectures are required that can provide a reliable service platform for the delivery of 5G services and beyond. Device Enhanced Edge Computing is a derivative of Multi-Access Edge Computing (MEC), which provides computing and storage resources directly on the end devices. The importance of this concept is evidenced by the increasing demands of ultra-low latency computationally intensive applications that overwhelm the MEC server alone and the wireless channel. This dissertation presents a computational offloading framework considering energy, mobility and incentives in a multi-user, multi-task device-based MEC system that takes into account task interdependence and application latency requirements

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network
    • …
    corecore