42,358 research outputs found

    Reducing Electricity Demand Charge for Data Centers with Partial Execution

    Full text link
    Data centers consume a large amount of energy and incur substantial electricity cost. In this paper, we study the familiar problem of reducing data center energy cost with two new perspectives. First, we find, through an empirical study of contracts from electric utilities powering Google data centers, that demand charge per kW for the maximum power used is a major component of the total cost. Second, many services such as Web search tolerate partial execution of the requests because the response quality is a concave function of processing time. Data from Microsoft Bing search engine confirms this observation. We propose a simple idea of using partial execution to reduce the peak power demand and energy cost of data centers. We systematically study the problem of scheduling partial execution with stringent SLAs on response quality. For a single data center, we derive an optimal algorithm to solve the workload scheduling problem. In the case of multiple geo-distributed data centers, the demand of each data center is controlled by the request routing algorithm, which makes the problem much more involved. We decouple the two aspects, and develop a distributed optimization algorithm to solve the large-scale request routing problem. Trace-driven simulations show that partial execution reduces cost by 3%−−10.5%3\%--10.5\% for one data center, and by 15.5%15.5\% for geo-distributed data centers together with request routing.Comment: 12 page

    Economic Optimization of Fiber Optic Network Design in Anchorage

    Get PDF
    Presented to the Faculty of the University of Alaska Anchorage in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE, ENGINEERING MANAGEMENTThe wireline telecommunications industry is currently involved in an evolution. Growing bandwidth demands are putting pressure on the capabilities of outdated copper based networks. These demands are being meet by replacing these copper based networks with fiber optic networks. Unfortunately, telecommunications decision makers are tasked with figuring out how best to deploy these networks with little ability to plan, organize, lead, or control these large projects. This project introduces a novel approach to designing fiber optic access networks. By leveraging well known clustering and routing techniques to produce sound network design, decision makers will better understand how to divide service areas, where to place fiber, and how much fiber should be placed. Combining this output with other typical measures of costs and revenue, the decision maker will also be able to focus on the business areas that will provide the best outcome when undertaking this transformational evolution of physical networks.Introduction / Background / Clustering, Routing, and the Model / Results and Analysis / Conclusion / Reference
    • …
    corecore