79,409 research outputs found

    Oxidised cosmic acceleration

    Full text link
    We give detailed proofs of several new no-go theorems for constructing flat four-dimensional accelerating universes from warped dimensional reduction. These new theorems improve upon previous ones by weakening the energy conditions, by including time-dependent compactifications, and by treating accelerated expansion that is not precisely de Sitter. We show that de Sitter expansion violates the higher-dimensional null energy condition (NEC) if the compactification manifold M is one-dimensional, if its intrinsic Ricci scalar R vanishes everywhere, or if R and the warp function satisfy a simple limit condition. If expansion is not de Sitter, we establish threshold equation-of-state parameters w below which accelerated expansion must be transient. Below the threshold w there are bounds on the number of e-foldings of expansion. If M is one-dimensional or R everywhere vanishing, exceeding the bound implies the NEC is violated. If R does not vanish everywhere on M, exceeding the bound implies the strong energy condition (SEC) is violated. Observationally, the w thresholds indicate that experiments with finite resolution in w can cleanly discriminate between different models which satisfy or violate the relevant energy conditions.Comment: v2: corrections, references adde

    Cosmic acceleration: Inhomogeneity versus vacuum energy

    Get PDF
    In this essay, I present an alternative explanation for the cosmic acceleration which appears as a consequence of recent high redshift Supernova data. In the usual interpretation, this cosmic acceleration is explained by the presence of a positive cosmological constant or vacuum energy, in the background of Friedmann models. Instead, I will consider a Local Rotational Symmetric (LRS) inhomogeneous spacetime, with a barotropic equation of state for the cosmic matter. Within this framework the kinematical acceleration of the cosmic fluid or, equivalently, the inhomogeneity of matter, is just the responsible of the SNe Ia measured cosmic acceleration. Although in our model the Cosmological Principle is relaxed, it maintains local isotropy about our worldline in agreement with the CBR experiments.Comment: LATEX, 7 pags, no figs, Honorable Mention in the 1999 Essay Competition of the Gravity Research Foundatio

    Cosmic Ray Acceleration in Supernova Remnants

    Full text link
    We review the main observational and theoretical facts about acceleration of Galactic cosmic rays in supernova remnants, discussing the arguments in favor and against a connection between cosmic rays and supernova remnants, the so-called supernova remnant paradigm for the origin of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of 1) magnetic field amplification, 2) acceleration of nuclei heavier than hydrogen, 3) presence of neutrals in the circumstellar environment. The status of the supernova-cosmic ray connection in the time of Fermi-LAT and Cherenkov telescopes is also discussed.Comment: Invited Plenary review talk at ICATPP 2010, Villa Olmo, Como 7-8 October 201

    Modified gravity as a common cause for cosmic acceleration and flat galaxy rotation curves

    Full text link
    Flat galaxy rotation curves and the accelerating Universe both imply the existence of a critical acceleration, which is of the same order of magnitude in both the cases, in spite of the galactic and cosmic length scales being vastly different. Yet, it is customary to explain galactic acceleration by invoking gravitationally bound dark matter, and cosmic acceleration by invoking a `repulsive` dark energy. Instead, might it not be the case that the flatness of rotation curves and the acceleration of the Universe have a common cause? In this essay we propose a modified theory of gravity. By applying the theory on galactic scales we demonstrate flat rotation curves without dark matter, and by applying it on cosmological scales we demonstrate cosmic acceleration without dark energy.Comment: 7 pages, 1 fgure. Honorable Mention in Gravity Research Foundation Essay Contest 2012. v2: Two minor typos correcte

    Cosmography and cosmic acceleration

    Full text link
    We investigate the prospects for determining the accelerating history of the Universe from upcoming measurements of the expansion rate H(z)H(z). In our analyses, we use Monte Carlo simulations based on wwCDM models to generate samples with different characteristics and calculate the evolution of the deceleration parameter q(z)q(z). We show that a cosmographic (and, therefore, model-independent) evidence for cosmic acceleration (q(z<zt)<0q(z<z_t) < 0, where ztz_t is the transition redshift) will only be possible with an accuracy in H(z)H(z) data greater than the expected in current planned surveys. A brief discussion about the prospects for reconstructing the dark energy equation of state from the parameters H(z)H(z) and q(z)q(z) is also included.Comment: 5 pages. 4 figures, LaTe
    corecore