166,534 research outputs found

    Relationship between activity in human primary motor cortex during action observation and the mirror neuron system

    Get PDF
    The attenuation of the beta cortical oscillations during action observation has been interpreted as evidence of a mirror neuron system (MNS) in humans. Here we investigated the modulation of beta cortical oscillations with the viewpoint of an observed action. We asked subjects to observe videos of an actor making a variety of arm movements. We show that when subjects were observing arm movements there was a significant modulation of beta oscillations overlying left and right sensorimotor cortices. This pattern of attenuation was driven by the side of the screen on which the observed movement occurred and not by the hand that was observed moving. These results are discussed in terms of the firing patterns of mirror neurons in F5 which have been reported to have similar properties

    Simulating Cortical Feedback Modulation as Changes in Excitation and Inhibition in a Cortical Circuit Model.

    Get PDF
    Cortical feedback pathways are hypothesized to distribute context-dependent signals during flexible behavior. Recent experimental work has attempted to understand the mechanisms by which cortical feedback inputs modulate their target regions. Within the mouse whisker sensorimotor system, cortical feedback stimulation modulates spontaneous activity and sensory responsiveness, leading to enhanced sensory representations. However, the cellular mechanisms underlying these effects are currently unknown. In this study we use a simplified neural circuit model, which includes two recurrent excitatory populations and global inhibition, to simulate cortical modulation. First, we demonstrate how changes in the strengths of excitation and inhibition alter the input-output processing responses of our model. Second, we compare these responses with experimental findings from cortical feedback stimulation. Our analyses predict that enhanced inhibition underlies the changes in spontaneous and sensory evoked activity observed experimentally. More generally, these analyses provide a framework for relating cellular and synaptic properties to emergent circuit function and dynamic modulation

    Top-down inputs enhance orientation selectivity in neurons of the primary visual cortex during perceptual learning.

    Get PDF
    Perceptual learning has been used to probe the mechanisms of cortical plasticity in the adult brain. Feedback projections are ubiquitous in the cortex, but little is known about their role in cortical plasticity. Here we explore the hypothesis that learning visual orientation discrimination involves learning-dependent plasticity of top-down feedback inputs from higher cortical areas, serving a different function from plasticity due to changes in recurrent connections within a cortical area. In a Hodgkin-Huxley-based spiking neural network model of visual cortex, we show that modulation of feedback inputs to V1 from higher cortical areas results in shunting inhibition in V1 neurons, which changes the response properties of V1 neurons. The orientation selectivity of V1 neurons is enhanced without changing orientation preference, preserving the topographic organizations in V1. These results provide new insights to the mechanisms of plasticity in the adult brain, reconciling apparently inconsistent experiments and providing a new hypothesis for a functional role of the feedback connections

    Reduced neurosteroid potentiation of GABAA receptors in epilepsy and depolarized hippocampal neurons

    Get PDF
    OBJECTIVE: Neurosteroids regulate neuronal excitability by potentiating γ-aminobutyric acid type-A receptors (GABARs). In animal models of temporal lobe epilepsy, the neurosteroid sensitivity of GABARs is diminished and GABAR subunit composition is altered. We tested whether similar changes occur in patients with epilepsy and if depolarization-induced increases in neuronal activity can replicate this effect. METHODS: We determined GABAR α4 subunit expression in cortical tissue resected from pediatric epilepsy patients. Modulation of human GABARs by allopregnanolone and Ro15-4513 was measured in Xenopus oocytes using whole-cell patch clamp. To extend the findings obtained using tissue from epilepsy patients, we evaluated GABAR expression and modulation by allopregnanolone and Ro15-4513 in cultured rat hippocampal neurons exposed to high extracellular potassium (HK) to increase neuronal activity. RESULTS: Expression of α4 subunits was increased in pediatric cortical epilepsy specimens encompassing multiple pathologies. The potentiation of GABA-evoked currents by the neurosteroid allopregnanolone was decreased in Xenopus oocytes expressing GABARs isolated from epilepsy patients. Furthermore, receptors isolated from epilepsy but not control tissue were sensitive to potentiation by Ro15-4513, indicating higher expression of α INTERPRETATION: These findings suggest that seizure activity-induced upregulation of

    A Model of Movement Coordinates in Motor Cortex: Posture-Dependent Changes in the Gain and Direction of Single Cell Tuning Curves

    Full text link
    Central to the problem of elucidating the cortical mechanisms that mediate movement behavior is an investigation of the coordinate systems by which movement variables are encoded in the firing rates of individual motor cortical neurons. In the last decade, neurophysiologists have probed how the preferred direction of an individual motor cortical cell (as determined by a center-out task) will change with posture because such changes are useful for inferring underlying cordinates. However, while the importance of shifts in preferred direction is well-known and widely accepted, posture-dependent changes in the depth of modulation of a cell's tuning curve, i.e. gain changes, have not been similarly identified as a means of coordinate inference. This paper develops a vector field framework which, by viewing the preferred direction and the gain of a cell's tuning curve as dual components of a unitary response vector, can compute how each aspect of cell response covaries with posture as a function of the coordinate system in which a given cell is hypothesized to encode its movement information. This integrated approach leads to a model of motor cortical cell activity that codifies the following four observations: 1) cell activity correlates with hand movement direction, 2) cell activity correlates with hand movement speed, 3) preferred directions vary with posture, and 4) the modulation depth of tuning curves varies with posture. Finally, the model suggests general methods for testing coordinate hypotheses at the single cell level and example protocols arc simulated for three possible coordinate systems: Cartesian spatial, shoulder-centered, and joint angle.Defense Advanced Research Projects Agency (N00014-92-J-4015); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-90-00530, IRI-97-20333); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309, N00014-94-l-0940, N00014-95-1-0657)

    Gain modulation of synaptic inputs by network state in auditory cortex in vivo

    Get PDF
    The cortical network recurrent circuitry generates spontaneous activity organized into Up (active) and Down (quiescent) states during slow-wave sleep or anesthesia. These different states of cortical activation gain modulate synaptic transmission. However, the reported modulation that Up states impose on synaptic inputs is disparate in the literature, including both increases and decreases of responsiveness. Here, we tested the hypothesis that such disparate observations may depend on the intensity of the stimulation. By means of intracellular recordings, we studied synaptic transmission during Up and Down states in rat auditory cortex in vivo. Synaptic potentials were evoked either by auditory or electrical (thalamocortical, intracortical) stimulation while randomly varying the intensity of the stimulus. Synaptic potentials evoked by the same stimulus intensity were compared in Up/Down states. Up states had a scaling effect on the stimulus-evoked synaptic responses: the amplitude of weaker responses was potentiated whereas that of larger responses was maintained or decreased with respect to the amplitude during Down states. We used a computational model to explore the potential mechanisms explaining this nontrivial stimulus–response relationship. During Up/Down states, there is different excitability in the network and the neuronal conductance varies. We demonstrate that the competition between presynaptic recruitment and the changing conductance might be the central mechanism explaining the experimentally observed stimulus–response relationships. We conclude that the effect that cortical network activation has on synaptic transmission is not constant but contingent on the strength of the stimulation, with a larger modulation for stimuli involving both thalamic and cortical networks.Fil: Reig, Ramon. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Zerlaut, Yann. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; FranciaFil: Vergara, Ramiro Oscar. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Acústica y Percepción Sonora; ArgentinaFil: Destexhe, Alain. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; FranciaFil: Sánchez Vives, María V.. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Institució Catalana de Recerca i Estudis Avancats; Españ

    Neural Mechanisms of Selective Auditory Attention in Rats (Dissertation)

    Get PDF
    How does attention modulate sensory representations? In order to probe the underlying neural mechanisms, we established a simple rodent model of modality-specific attention. Rats were trained to perform distinct auditory two-tone discrimination and olfactory odor discrimination in a two alternative choice (2AC) paradigm. 
To determine auditory cortex’s role in this frequency discrimination task, we used GABA-A receptor agonist muscimol to transiently and reversibly inactivate auditory cortexes bilaterally in rats performing simple interleaved auditory and olfactory discrimination. With olfactory discrimination performance serving as internal control for motivation and decision making capability, we found only auditory two-tone discrimination was selectively impaired in these rats. This shows the auditory cortex is involved in this two-tone discrimination task.
To investigate the neural correlate of modality-specific attention in the auditory cortex, we trained rats to perform interleaved auditory and olfactory blocks (of 50~70 trials each) in a single session. In auditory blocks, pure tones were either presented with or without a neutral odor (caproic acid, n=2 and 3 respectively), and subjects were rewarded for discriminating auditory stimuli. In olfactory blocks, both task odors and pure tones were presented simultaneously, and subjects were rewarded for discriminating olfactory stimuli. We recorded neural responses in primary auditory cortex (area A1) in freely moving rats while subjects performed this behavior. Single unit responses to tones were heterogeneous, and included transient, sustained, and suppressed. We found 205 of 802 units recorded responsive to the stimuli we used. Of these 205 units, 18.5% showed modality-specific attentional modulation of the anticipatory activity before tone onset. In addition, we also observed in smaller proportion of units (11.2%) modality-specific attentional modulation of the tone-evoked responses; in most cases, the responses to a particular auditory stimulus was enhanced in the auditory block (or, equivalently, suppressed in the olfactory block). Attention increased choice probability of the population in the auditory block. We have also observed significant behavior choice probability in small proportions of units. 
Our results suggest that shifting attention between audition to olfaction tasks can modulate the activity of single neurons in primary auditory cortex
    corecore