324 research outputs found

    A Generalised Quantifier Theory of Natural Language in Categorical Compositional Distributional Semantics with Bialgebras

    Get PDF
    Categorical compositional distributional semantics is a model of natural language; it combines the statistical vector space models of words with the compositional models of grammar. We formalise in this model the generalised quantifier theory of natural language, due to Barwise and Cooper. The underlying setting is a compact closed category with bialgebras. We start from a generative grammar formalisation and develop an abstract categorical compositional semantics for it, then instantiate the abstract setting to sets and relations and to finite dimensional vector spaces and linear maps. We prove the equivalence of the relational instantiation to the truth theoretic semantics of generalised quantifiers. The vector space instantiation formalises the statistical usages of words and enables us to, for the first time, reason about quantified phrases and sentences compositionally in distributional semantics

    Coalgebraic completeness-via-canonicity for distributive substructural logics

    Get PDF
    We prove strong completeness of a range of substructural logics with respect to a natural poset-based relational semantics using a coalgebraic version of completeness-via-canonicity. By formalizing the problem in the language of coalgebraic logics, we develop a modular theory which covers a wide variety of different logics under a single framework, and lends itself to further extensions. Moreover, we believe that the coalgebraic framework provides a systematic and principled way to study the relationship between resource models on the semantics side, and substructural logics on the syntactic side.Comment: 36 page

    The dagger lambda calculus

    Full text link
    We present a novel lambda calculus that casts the categorical approach to the study of quantum protocols into the rich and well established tradition of type theory. Our construction extends the linear typed lambda calculus with a linear negation of "trivialised" De Morgan duality. Reduction is realised through explicit substitution, based on a symmetric notion of binding of global scope, with rules acting on the entire typing judgement instead of on a specific subterm. Proofs of subject reduction, confluence, strong normalisation and consistency are provided, and the language is shown to be an internal language for dagger compact categories.Comment: In Proceedings QPL 2014, arXiv:1412.810
    • …
    corecore