6 research outputs found

    Expressing the entropy of lattice systems as sums of conditional entropies

    Full text link
    Whether a system is to be considered complex or not depends on how one searches for correlations. We propose a general scheme for calculation of entropies in lattice systems that has high flexibility in how correlations are successively taken into account. Compared to the traditional approach for estimating the entropy density, in which successive approximations builds on step-wise extensions of blocks of symbols, we show that one can take larger steps when collecting the statistics necessary to calculate the entropy density of the system. In one dimension this means that, instead of a single sweep over the system in which states are read sequentially, one take several sweeps with larger steps so that eventually the whole lattice is covered. This means that the information in correlations is captured in a different way, and in some situations this will lead to a considerably much faster convergence of the entropy density estimate as a function of the size of the configurations used in the estimate. The formalism is exemplified with both an example of a free energy minimisation scheme for the two-dimensional Ising model, and an example of increasingly complex spatial correlations generated by the time evolution of elementary cellular automaton rule 60

    The approach towards equilibrium in a reversible Ising dynamics model -- an information-theoretic analysis based on an exact solution

    Get PDF
    We study the approach towards equilibrium in a dynamic Ising model, the Q2R cellular automaton, with microscopic reversibility and conserved energy for an infinite one-dimensional system. Starting from a low-entropy state with positive magnetisation, we investigate how the system approaches equilibrium characteristics given by statistical mechanics. We show that the magnetisation converges to zero exponentially. The reversibility of the dynamics implies that the entropy density of the microstates is conserved in the time evolution. Still, it appears as if equilibrium, with a higher entropy density is approached. In order to understand this process, we solve the dynamics by formally proving how the information-theoretic characteristics of the microstates develop over time. With this approach we can show that an estimate of the entropy density based on finite length statistics within microstates converges to the equilibrium entropy density. The process behind this apparent entropy increase is a dissipation of correlation information over increasing distances. It is shown that the average information-theoretic correlation length increases linearly in time, being equivalent to a corresponding increase in excess entropy.Comment: 15 pages, 2 figure

    Renormalization of cellular automata and self-similarity

    Full text link
    We study self-similarity in one-dimensional probabilistic cellular automata (PCA) using the renormalization technique. We introduce a general framework for algebraic construction of renormalization groups (RG) on cellular automata and apply it to exhaustively search the rule space for automata displaying dynamic criticality. Previous studies have shown that there exists several exactly renormalizable deterministic automata. We show that the RG fixed points for such self-similar CA are unstable in all directions under renormalization. This implies that the large scale structure of self-similar deterministic elementary cellular automata is destroyed by any finite error probability. As a second result we show that the only non-trivial critical PCA are the different versions of the well-studied phenomenon of directed percolation. We discuss how the second result supports a conjecture regarding the universality class for dynamic criticality defined by directed percolation.Comment: 14 pages, 4 figure

    Complexity of Two-Dimensional Patterns

    Full text link
    In dynamical systems such as cellular automata and iterated maps, it is often useful to look at a language or set of symbol sequences produced by the system. There are well-established classification schemes, such as the Chomsky hierarchy, with which we can measure the complexity of these sets of sequences, and thus the complexity of the systems which produce them. In this paper, we look at the first few levels of a hierarchy of complexity for two-or-more-dimensional patterns. We show that several definitions of ``regular language'' or ``local rule'' that are equivalent in d=1 lead to distinct classes in d >= 2. We explore the closure properties and computational complexity of these classes, including undecidability and L-, NL- and NP-completeness results. We apply these classes to cellular automata, in particular to their sets of fixed and periodic points, finite-time images, and limit sets. We show that it is undecidable whether a CA in d >= 2 has a periodic point of a given period, and that certain ``local lattice languages'' are not finite-time images or limit sets of any CA. We also show that the entropy of a d-dimensional CA's finite-time image cannot decrease faster than t^{-d} unless it maps every initial condition to a single homogeneous state.Comment: To appear in J. Stat. Phy
    corecore