2 research outputs found

    Overview of Caching Mechanisms to Improve Hadoop Performance

    Full text link
    Nowadays distributed computing environments, large amounts of data are generated from different resources with a high velocity, rendering the data difficult to capture, manage, and process within existing relational databases. Hadoop is a tool to store and process large datasets in a parallel manner across a cluster of machines in a distributed environment. Hadoop brings many benefits like flexibility, scalability, and high fault tolerance; however, it faces some challenges in terms of data access time, I/O operation, and duplicate computations resulting in extra overhead, resource wastage, and poor performance. Many researchers have utilized caching mechanisms to tackle these challenges. For example, they have presented approaches to improve data access time, enhance data locality rate, remove repetitive calculations, reduce the number of I/O operations, decrease the job execution time, and increase resource efficiency. In the current study, we provide a comprehensive overview of caching strategies to improve Hadoop performance. Additionally, a novel classification is introduced based on cache utilization. Using this classification, we analyze the impact on Hadoop performance and discuss the advantages and disadvantages of each group. Finally, a novel hybrid approach called Hybrid Intelligent Cache (HIC) that combines the benefits of two methods from different groups, H-SVM-LRU and CLQLMRS, is presented. Experimental results show that our hybrid method achieves an average improvement of 31.2% in job execution time

    A Design Framework for Efficient Distributed Analytics on Structured Big Data

    Get PDF
    Distributed analytics architectures are often comprised of two elements: a compute engine and a storage system. Conventional distributed storage systems usually store data in the form of files or key-value pairs. This abstraction simplifies how the data is accessed and reasoned about by an application developer. However, the separation of compute and storage systems makes it difficult to optimize costly disk and network operations. By design the storage system is isolated from the workload and its performance requirements such as block co-location and replication. Furthermore, optimizing fine-grained data access requests becomes difficult as the storage layer is hidden away behind such abstractions. Using a clean slate approach, this thesis proposes a modular distributed analytics system design which is centered around a unified interface for distributed data objects named the DDO. The interface couples key mechanisms that utilize storage, memory, and compute resources. This coupling makes it ideal to optimize data access requests across all memory hierarchy levels, with respect to the workload and its performance requirements. In addition to the DDO, a complementary DDO controller implementation controls the logical view of DDOs, their replication, and distribution across the cluster. A proof-of-concept implementation shows improvement in mean query time by 3-6x on the TPC-H and TPC-DS benchmarks, and more than an order of magnitude improvement in many cases
    corecore