1,424 research outputs found

    Neuro-electronic technology in medicine and beyond

    Get PDF
    This dissertation looks at the technology and social issues involved with interfacing electronics directly to the human nervous system, in particular the methods for both reading and stimulating nerves. The development and use of cochlea implants is discussed, and is compared with recent developments in artificial vision. The final sections consider a future for non-medicinal applications of neuro-electronic technology. Social attitudes towards use for both medicinal and non-medicinal purposes are discussed, and the viability of use in the latter case assessed

    Development of brainstem-evoked responses in congenital auditory deprivation

    Get PDF
    To compare the development of the auditory system in hearing and completely acoustically deprived animals, naive congenitally deaf white cats (CDCs) and hearing controls (HCs) were investigated at different developmental stages from birth till adulthood. The CDCs had no hearing experience before the acute experiment. In both groups of animals, responses to cochlear implant stimulation were acutely assessed. Electrically evoked auditory brainstem responses (E-ABRs) were recorded with monopolar stimulation at different current levels. CDCs demonstrated extensive development of E-ABRs, from first signs of responses at postnatal (p.n.) day 3 through appearance of all waves of brainstem response at day 8 p.n. to mature responses around day 90 p.n.. Wave I of E-ABRs could not be distinguished from the artifact in majority of CDCs, whereas in HCs, it was clearly separated from the stimulus artifact. Waves II, III, and IV demonstrated higher thresholds in CDCs, whereas this difference was not found for wave V. Amplitudes of wave III were significantly higher in HCs, whereas wave V amplitudes were significantly higher in CDCs. No differences in latencies were observed between the animal groups. These data demonstrate significant postnatal subcortical development in absence of hearing, and also divergent effects of deafness on early waves II–IV and wave V of the E-ABR

    Hearing versus Listening: Attention to Speech and Its Role in Language Acquisition in Deaf Infants with Cochlear Implants

    Get PDF
    The advent of cochlear implantation has provided thousands of deaf infants and children access to speech and the opportunity to learn spoken language. Whether or not deaf infants successfully learn spoken language after implantation may depend in part on the extent to which they listen to speech rather than just hear it. We explore this question by examining the role that attention to speech plays in early language development according to a prominent model of infant speech perception – Jusczyk’s WRAPSA model – and by reviewing the kinds of speech input that maintains normal-hearing infants’ attention. We then review recent findings suggesting that cochlear-implanted infants’ attention to speech is reduced compared to normal-hearing infants and that speech input to these infants differs from input to infants with normal hearing. Finally, we discuss possible roles attention to speech may play on deaf children’s language acquisition after cochlear implantation in light of these findings and predictions from Jusczyk’s WRAPSA model

    Avoiding Linguistic Neglect Of Deaf Children

    Get PDF
    Deaf children who are not provided with a sign language early in their development are at risk of linguistic deprivation; they may never be fluent in any language, and they may have deficits in cognitive activities that rely on a firm foundation in a first language. These children are socially and emotionally isolated. Deafness makes a child vulnerable to abuse, and linguistic deprivation compounds the abuse because the child is less able to report it. Parents rely on professionals as guides in making responsible choices in raising and educating their deaf children. But lack of expertise on language acquisition and overreliance on access to speech often result in professionals not recommending that the child be taught a sign language or, worse, that the child be denied sign language. We recommend action that those in the social welfare services can implement immediately to help protect the health of deaf children

    Verbal Processing Speed and Executive Functioning in Long-Term Cochlear Implant Users

    Get PDF
    Purpose: The purpose of this study was to report how verbal rehearsal speed (VRS), a form of covert speech used to maintain verbal information in working memory, and another verbal processing speed measure, perceptual encoding speed, are related to 3 domains of executive function (EF) at risk in cochlear implant (CI) users: verbal working memory, fluency-speed, and inhibition-concentration. Method: EF, speech perception, and language outcome measures were obtained from 55 prelingually deaf, long-term CI users and matched controls with normal hearing (NH controls). Correlational analyses were used to assess relations between VRS (articulation rate), perceptual encoding speed (digit and color naming), and the outcomes in each sample. Results: CI users displayed slower verbal processing speeds than NH controls. Verbal rehearsal speed was related to 2 EF domains in the NH sample but was unrelated to EF outcomes in CI users. Perceptual encoding speed was related to all EF domains in both groups. Conclusions: Verbal rehearsal speed may be less influential for EF quality in CI users than for NH controls, whereas rapid automatized labeling skills and EF are closely related in both groups. CI users may develop processing strategies in EF tasks that differ from the covert speech strategies routinely employed by NH individuals

    Impact of aging on the auditory system and related cognitive functions: A narrative review

    Get PDF
    Age-related hearing loss (ARHL), presbycusis, is a chronic health condition that affects approximately one-third of the world’s population. The peripheral and central hearing alterations associated with age-related hearing loss have a profound impact on perception of verbal and non-verbal auditory stimuli. The high prevalence of hearing loss in the older adults corresponds to the increased frequency of dementia in this population. Therefore, researchers have focused their attention on age-related central effects that occur independent of the peripheral hearing loss as well as central effects of peripheral hearing loss and its association with cognitive decline and dementia. Here we review the current evidence for the age-related changes of the peripheral and central auditory system and the relationship between hearing loss and pathological cognitive decline and dementia. Furthermore, there is a paucity of evidence on the relationship between ARHL and established biomarkers of Alzheimer’s disease, as the most common cause of dementia. Such studies are critical to be able to consider any causal relationship between dementia and ARHL. While this narrative review will examine the pathophysiological alterations in both the peripheral and central auditory system and its clinical implications, the question remains unanswered whether hearing loss causes cognitive impairment or vice versa

    Single-unit responses in the auditory cortex of monkeys performing a conditional acousticomotor task

    Get PDF
    The general goal of the present study was to assess the response properties to tones of single neurons in the auditory cortex (primary auditory area, A1, and middle lateral auditory belt, ML) of two macaque monkeys while performing an acousticomotor discrimination task requiring a controlled level of attention and motivation. For each neuron, an approximation of the frequency receptive field (FRF) was first established. Second, based on the FRF, sets of paired tone frequencies were defined in which two different tone frequencies had to be associated by the monkey, following a trial and error strategy, to a left or a right key-press with the left arm. After acquisition of the association, the two tones of the pair were presented randomly ("instruction stimulus”) and, if the monkey touched the correct key, the stimulus was repeated ("confirmation stimulus”) and a reward was delivered. The majority of units (63%) had a FRF formed by multiple peaks, whereas 25% and 12% of units exhibited a simple U-shaped FRF and a "mosaic” FRF, composed of several separated zones of response, respectively. Five principal response patterns were observed: On, Off, On-Off, Sustained, and Inhibition. In relation to the acousticomotor association task, some auditory cortical neurons (33%) exhibited a different response to the same stimulus when presented, in the same trials, as instruction or as confirmation. It was also observed that the response to the same instruction stimulus could differ when comparing correct trials with erroneous trials (wrong motor response). In conclusion, the response properties of auditory cortical neurons in behaving monkeys are strongly dependent on the physical parameters of sounds (frequency, intensity, etc.) as indicated by FRF characteristics, but a substantial influence of the behavioral context and performance may also play an important rol

    Functional roles of synaptic inhibition in auditory temporal processing

    Get PDF
    corecore