1,316 research outputs found

    Gaussian Belief with dynamic data and in dynamic network

    Full text link
    In this paper we analyse Belief Propagation over a Gaussian model in a dynamic environment. Recently, this has been proposed as a method to average local measurement values by a distributed protocol ("Consensus Propagation", Moallemi & Van Roy, 2006), where the average is available for read-out at every single node. In the case that the underlying network is constant but the values to be averaged fluctuate ("dynamic data"), convergence and accuracy are determined by the spectral properties of an associated Ruelle-Perron-Frobenius operator. For Gaussian models on Erdos-Renyi graphs, numerical computation points to a spectral gap remaining in the large-size limit, implying exceptionally good scalability. In a model where the underlying network also fluctuates ("dynamic network"), averaging is more effective than in the dynamic data case. Altogether, this implies very good performance of these methods in very large systems, and opens a new field of statistical physics of large (and dynamic) information systems.Comment: 5 pages, 7 figure

    Distributed Convergence Verification for Gaussian Belief Propagation

    Full text link
    Gaussian belief propagation (BP) is a computationally efficient method to approximate the marginal distribution and has been widely used for inference with high dimensional data as well as distributed estimation in large-scale networks. However, the convergence of Gaussian BP is still an open issue. Though sufficient convergence conditions have been studied in the literature, verifying these conditions requires gathering all the information over the whole network, which defeats the main advantage of distributed computing by using Gaussian BP. In this paper, we propose a novel sufficient convergence condition for Gaussian BP that applies to both the pairwise linear Gaussian model and to Gaussian Markov random fields. We show analytically that this sufficient convergence condition can be easily verified in a distributed way that satisfies the network topology constraint.Comment: accepted by Asilomar Conference on Signals, Systems, and Computers, 2017, Asilomar, Pacific Grove, CA. arXiv admin note: text overlap with arXiv:1706.0407

    Distributed Large Scale Network Utility Maximization

    Full text link
    Recent work by Zymnis et al. proposes an efficient primal-dual interior-point method, using a truncated Newton method, for solving the network utility maximization (NUM) problem. This method has shown superior performance relative to the traditional dual-decomposition approach. Other recent work by Bickson et al. shows how to compute efficiently and distributively the Newton step, which is the main computational bottleneck of the Newton method, utilizing the Gaussian belief propagation algorithm. In the current work, we combine both approaches to create an efficient distributed algorithm for solving the NUM problem. Unlike the work of Zymnis, which uses a centralized approach, our new algorithm is easily distributed. Using an empirical evaluation we show that our new method outperforms previous approaches, including the truncated Newton method and dual-decomposition methods. As an additional contribution, this is the first work that evaluates the performance of the Gaussian belief propagation algorithm vs. the preconditioned conjugate gradient method, for a large scale problem.Comment: In the International Symposium on Information Theory (ISIT) 200

    Gaussian Belief Propagation Based Multiuser Detection

    Full text link
    In this work, we present a novel construction for solving the linear multiuser detection problem using the Gaussian Belief Propagation algorithm. Our algorithm yields an efficient, iterative and distributed implementation of the MMSE detector. We compare our algorithm's performance to a recent result and show an improved memory consumption, reduced computation steps and a reduction in the number of sent messages. We prove that recent work by Montanari et al. is an instance of our general algorithm, providing new convergence results for both algorithms.Comment: 6 pages, 1 figures, appeared in the 2008 IEEE International Symposium on Information Theory, Toronto, July 200

    On the Geometry of Message Passing Algorithms for Gaussian Reciprocal Processes

    Full text link
    Reciprocal processes are acausal generalizations of Markov processes introduced by Bernstein in 1932. In the literature, a significant amount of attention has been focused on developing dynamical models for reciprocal processes. Recently, probabilistic graphical models for reciprocal processes have been provided. This opens the way to the application of efficient inference algorithms in the machine learning literature to solve the smoothing problem for reciprocal processes. Such algorithms are known to converge if the underlying graph is a tree. This is not the case for a reciprocal process, whose associated graphical model is a single loop network. The contribution of this paper is twofold. First, we introduce belief propagation for Gaussian reciprocal processes. Second, we establish a link between convergence analysis of belief propagation for Gaussian reciprocal processes and stability theory for differentially positive systems.Comment: 15 pages; Typos corrected; This paper introduces belief propagation for Gaussian reciprocal processes and extends the convergence analysis in arXiv:1603.04419 to the Gaussian cas

    Message-Passing Algorithms for Quadratic Minimization

    Full text link
    Gaussian belief propagation (GaBP) is an iterative algorithm for computing the mean of a multivariate Gaussian distribution, or equivalently, the minimum of a multivariate positive definite quadratic function. Sufficient conditions, such as walk-summability, that guarantee the convergence and correctness of GaBP are known, but GaBP may fail to converge to the correct solution given an arbitrary positive definite quadratic function. As was observed in previous work, the GaBP algorithm fails to converge if the computation trees produced by the algorithm are not positive definite. In this work, we will show that the failure modes of the GaBP algorithm can be understood via graph covers, and we prove that a parameterized generalization of the min-sum algorithm can be used to ensure that the computation trees remain positive definite whenever the input matrix is positive definite. We demonstrate that the resulting algorithm is closely related to other iterative schemes for quadratic minimization such as the Gauss-Seidel and Jacobi algorithms. Finally, we observe, empirically, that there always exists a choice of parameters such that the above generalization of the GaBP algorithm converges

    Convergence analysis of the information matrix in Gaussian belief propagation

    Get PDF
    Gaussian belief propagation (BP) has been widely used for distributed estimation in large-scale networks such as the smart grid, communication networks, and social networks, where local measurements/observations are scattered over a wide geographical area. However, the convergence of Gaus- sian BP is still an open issue. In this paper, we consider the convergence of Gaussian BP, focusing in particular on the convergence of the information matrix. We show analytically that the exchanged message information matrix converges for arbitrary positive semidefinite initial value, and its dis- tance to the unique positive definite limit matrix decreases exponentially fast.Comment: arXiv admin note: substantial text overlap with arXiv:1611.0201

    A Low Density Lattice Decoder via Non-Parametric Belief Propagation

    Full text link
    The recent work of Sommer, Feder and Shalvi presented a new family of codes called low density lattice codes (LDLC) that can be decoded efficiently and approach the capacity of the AWGN channel. A linear time iterative decoding scheme which is based on a message-passing formulation on a factor graph is given. In the current work we report our theoretical findings regarding the relation between the LDLC decoder and belief propagation. We show that the LDLC decoder is an instance of non-parametric belief propagation and further connect it to the Gaussian belief propagation algorithm. Our new results enable borrowing knowledge from the non-parametric and Gaussian belief propagation domains into the LDLC domain. Specifically, we give more general convergence conditions for convergence of the LDLC decoder (under the same assumptions of the original LDLC convergence analysis). We discuss how to extend the LDLC decoder from Latin square to full rank, non-square matrices. We propose an efficient construction of sparse generator matrix and its matching decoder. We report preliminary experimental results which show our decoder has comparable symbol to error rate compared to the original LDLC decoder.%Comment: Submitted for publicatio

    High-Dimensional Gaussian Graphical Model Selection: Walk Summability and Local Separation Criterion

    Full text link
    We consider the problem of high-dimensional Gaussian graphical model selection. We identify a set of graphs for which an efficient estimation algorithm exists, and this algorithm is based on thresholding of empirical conditional covariances. Under a set of transparent conditions, we establish structural consistency (or sparsistency) for the proposed algorithm, when the number of samples n=omega(J_{min}^{-2} log p), where p is the number of variables and J_{min} is the minimum (absolute) edge potential of the graphical model. The sufficient conditions for sparsistency are based on the notion of walk-summability of the model and the presence of sparse local vertex separators in the underlying graph. We also derive novel non-asymptotic necessary conditions on the number of samples required for sparsistency
    • …
    corecore