18,493 research outputs found

    All-optical logic circuits based on polarization properties of nondegenerate four-wave mixing

    Get PDF
    All-optical logic circuits based on the polarization properties of nondegenerate four-wave mixing are proposed. Schemes to perform multiple triple-product logic functions are discussed, and it is shown that higher-level Boolean operations that involve several bits can be implemented without resorting to the standard two-input gates. As a simple illustration of the idea, a circuit that performs error correction on a (3, 1) Hamming code is demonstrated. Error-free performance (bit error rate of <10^(−9)) at 2.5 Gbit/s is achieved after single-error correction on the Hamming word with 50% errors

    The Optical Frequency Comb as a One-Way Quantum Computer

    Full text link
    In the one-way model of quantum computing, quantum algorithms are implemented using only measurements on an entangled initial state. Much of the hard work is done up-front when creating this universal resource, known as a cluster state, on which the measurements are made. Here we detail a new proposal for a scalable method of creating cluster states using only a single multimode optical parametric oscillator (OPO). The method generates a continuous-variable cluster state that is universal for quantum computation and encoded in the quadratures of the optical frequency comb of the OPO. This work expands on the presentation in Phys. Rev. Lett. 101, 130501 (2008).Comment: 20 pages, 8 figures. v2 corrects minor error in published versio

    Electronic marking and identification techniques to discourage document copying

    Get PDF
    Modern computer networks make it possible to distribute documents quickly and economically by electronic means rather than by conventional paper means. However, the widespread adoption of electronic distribution of copyrighted material is currently impeded by the ease of illicit copying and dissemination. In this paper we propose techniques that discourage illicit distribution by embedding each document with a unique codeword. Our encoding techniques are indiscernible by readers, yet enable us to identify the sanctioned recipient of a document by examination of a recovered document. We propose three coding methods, describe one in detail, and present experimental results showing that our identification techniques are highly reliable, even after documents have been photocopied

    An Adaptive Entanglement Distillation Scheme Using Quantum Low Density Parity Check Codes

    Full text link
    Quantum low density parity check (QLDPC) codes are useful primitives for quantum information processing because they can be encoded and decoded efficiently. Besides, the error correcting capability of a few QLDPC codes exceeds the quantum Gilbert-Varshamov bound. Here, we report a numerical performance analysis of an adaptive entanglement distillation scheme using QLDPC codes. In particular, we find that the expected yield of our adaptive distillation scheme to combat depolarization errors exceed that of Leung and Shor whenever the error probability is less than about 0.07 or greater than about 0.28. This finding illustrates the effectiveness of using QLDPC codes in entanglement distillation.Comment: 12 pages, 6 figure
    corecore