26 research outputs found

    Robust Beam Search for Encoder-Decoder Attention Based Speech Recognition without Length Bias

    Full text link
    As one popular modeling approach for end-to-end speech recognition, attention-based encoder-decoder models are known to suffer the length bias and corresponding beam problem. Different approaches have been applied in simple beam search to ease the problem, most of which are heuristic-based and require considerable tuning. We show that heuristics are not proper modeling refinement, which results in severe performance degradation with largely increased beam sizes. We propose a novel beam search derived from reinterpreting the sequence posterior with an explicit length modeling. By applying the reinterpreted probability together with beam pruning, the obtained final probability leads to a robust model modification, which allows reliable comparison among output sequences of different lengths. Experimental verification on the LibriSpeech corpus shows that the proposed approach solves the length bias problem without heuristics or additional tuning effort. It provides robust decision making and consistently good performance under both small and very large beam sizes. Compared with the best results of the heuristic baseline, the proposed approach achieves the same WER on the 'clean' sets and 4% relative improvement on the 'other' sets. We also show that it is more efficient with the additional derived early stopping criterion.Comment: accepted at INTERSPEECH202

    Unsupervised Natural Question Answering with a Small Model

    Full text link
    The recent (2019-02) demonstration of the power of huge language models such as GPT-2 to memorise the answers to factoid questions raises questions about the extent to which knowledge is being embedded directly within these large models. This short paper describes an architecture through which much smaller models can also answer such questions - by making use of 'raw' external knowledge. The contribution of this work is that the methods presented here rely on unsupervised learning techniques, complementing the unsupervised training of the Language Model. The goal of this line of research is to be able to add knowledge explicitly, without extensive training.Comment: Accepted paper for FEVER workshop at EMNLP-IJCNLP 2019. (4 pages + references

    Masked Language Model Scoring

    Full text link
    Pretrained masked language models (MLMs) require finetuning for most NLP tasks. Instead, we evaluate MLMs out of the box via their pseudo-log-likelihood scores (PLLs), which are computed by masking tokens one by one. We show that PLLs outperform scores from autoregressive language models like GPT-2 in a variety of tasks. By rescoring ASR and NMT hypotheses, RoBERTa reduces an end-to-end LibriSpeech model's WER by 30% relative and adds up to +1.7 BLEU on state-of-the-art baselines for low-resource translation pairs, with further gains from domain adaptation. We attribute this success to PLL's unsupervised expression of linguistic acceptability without a left-to-right bias, greatly improving on scores from GPT-2 (+10 points on island effects, NPI licensing in BLiMP). One can finetune MLMs to give scores without masking, enabling computation in a single inference pass. In all, PLLs and their associated pseudo-perplexities (PPPLs) enable plug-and-play use of the growing number of pretrained MLMs; e.g., we use a single cross-lingual model to rescore translations in multiple languages. We release our library for language model scoring at https://github.com/awslabs/mlm-scoring.Comment: ACL 2020 camera-ready (presented July 2020

    Neural Machine Translation For Low Resource Languages

    Full text link
    Neural Machine translation is a challenging task due to the inherent complex nature and the fluidity that natural languages bring. Nonetheless, in recent years, it has achieved state-of-the-art performance in several language pairs. Although, a lot of traction can be seen in the areas of multilingual neural machine translation (MNMT) in the recent years, there are no comprehensive survey done to identify what approaches work well. The goal of this paper is to investigate the realm of low resource languages and build a Neural Machine Translation model to achieve state-of-the-art results. The paper looks to build upon the mBART language model and explore strategies to augment it with various NLP and Deep Learning techniques like back translation and transfer learning. This implementation tries to unpack the architecture of the NMT application and determine the different components which offers us opportunities to amend the said application within the purview of the low resource languages problem space
    corecore